How drones fuel ‘smart air’: Delivery drones

,

Where ‘smart traffic’ has already 417 billion hits on google, I only found ‘smart air’ for a kind of door lock and ‘smart drone’ for an advanced toy drone. But definitely, drones are so hot that they will become part of something called ‘smart air’. The SESAR project predicts that drones will make 250 billion hours of flight in the European Union alone. For comparison: this is far more than the air traffic of ‘normal’ airplanes today.

Because drones are using many sensors, we did some research how the use of drones can grow to maturity and fuel ‘smart air’. Today we talk about challenges for delivery drones.

Delivery drones

No wonder, drones have proven to be very convenient already and have even more promises in store. Soon, it will be commonplace that drones are delivering packages, from hot pizzas to even more urgent medicines. And even humans: the first drone taxis are already being tested. At this moment, drones are already used for drag-and-drop deliveries in some rural and faraway areas. Most articles on the internet talk about the use in drones in big city areas. And there they have the big advantage of an -still- almost empty sky instead of congested roads and overfull parking places. For that, delivery by drones will be faster and more predictable.

But until use of drones are entirely tried and tested, most drone developments will take place on rural environments. Because here the risk of large damage is a lot smaller when something will go wrong. In time, delivery drones will still be used in rural places. Maybe as a standalone, maybe in combination with self-driving trucks. Reach will not be a big problem, since the whole word is getting connected fast. So, reach will almost only depend on battery endurance. And for now, these batteries have only a limited capacity for distance and cargo.

Challenges while travelling

Like all delivery services, drone delivery has to a pick-up a package, travel to the destination and drop-of the package.  While travelling, drones have to know how to reach their destination. Meanwhile, there are some challenges:

  • Risk of colliding, with other drones, birds and other air users. Just like other traffic
  • And at point in time, some traffic rules have to be set in place. Sensors can help to let the drone follow these rules
  • How drones can stay on course, even with wind
  • Preventing drones to cross over forbidden (known) areas and unexpected ‘wrong’ areas (e.g. a building or a wood on fire)
  • How to prevent a package from falling? How to alert that a package will probably fall? Or maybe the drone itself? If so, measurement can be taken. Already, there are experiments with self-destruction. But maybe more practical solutions can be found to let the drone aim for a ‘safe area’, such as a park, river, etc. for an ‘emergency landing’
  • Acceptance of drones beside safety: how to guarentee privacy when drones are flying over peopled areas? Then there is the issue of noise: research shows that people find the noise of drones one of the most annoying forms of noise

Challenges with dropping the cargo

For now, the drop-of is literally done by dropping-of the cargo. Maybe with the aid of a cord which places the package as soft as possible to the ground. But anyhow: the drone stays in the air. So, technology has to get safe: for the package to be delivered undamaged. How does the drone know that the right person gets the package? And we have to prevent dogs from biting the package. And of course, to prevent that the dropped cargo will harm humans, animals or buildings or even worse.

The use of sensors

The application possibilities of drones are very promising for delivery uses. It is still in its experimental phase. But with developments going fast, soon it will reach the maturity phase. For this, there are two-fold kind of challenges.

Some are challenges on privacy, safety and security. These challenges have to be solved before the use of drones will get widespread trust and acceptance. The other are technical and communication issues: where multiple drones are being used – especially in cities- challenges how drones can and have to behave in traffic has to be solved.

In both challenges, sensors play a pivotal role in solving the technical questions. In all cases, ASN Filter Designer can help with sensor measurement with real-time feedback and the powerful signal analyzer. How? Look at ASN Filter Designer or mail ASN consultancy: designs@advsolned.com

Do you agree with this list? Do you have other suggestions? Please let us know!

How to measure preventative maintenance

,

Typical challenges faced by assets managers include:

  • How to measure mechanical component fatigue?
  • How to assess electrical wiring health?
  • How to reduce overall operating costs, but not comprise on public safety?
  • Risks posed by hackers & terrorists
  • Asset damage due to vandalism

Preventative Maintenance aims to solve the aforementioned problems by acting pre-emptively. This is achieved by constantly monitoring the performance of critical components (usually with sensors) and then alerting the maintenance team that a component is about to fail. The asset management team can then schedule maintenance in order to replace the failing component(s) with minimum disruption to the public, and overall lower operational costs.

  • Plan maintenance
  • Machine health care
  • Motor health care
  • Secure firmware updates and anti-tampering

Plan maintenance

Monitoring the health of critical component, such as a lamp, motor or machine component and input power supply. Our algorithms and analytics help asset management departments provide planned maintenance.

A better maintenance program is achieved by constantly monitoring the performance of critical components (usually with sensors or other devices) and then alerting the maintenance team that a component is about to fail.

Machine health care

The health of a machine can be determined by ‘listening’ to the sound it makes via microphones. Algorithms filter and compare recorded audio to fingerprint templates of known failures.

Motor health care

The health of an industrial motor be determined by analysis the phase currents. Algorithms filter and compare captured data to fingerprints templates of known failures. The phase current data can also be used to check for wire breaks or phase failure.

Secure firmware updates & Anti-tampering

ASN’s security module provides asset protection up to military grade, and while at the same time allowing for secure (encrypted) firmware updates.

ASN contactless measurement, smart algorithms and alerting offers the ideal condition for this programme. The asset management team can then schedule maintenance in order to replace the failing component(s) with minimum disruption to the public, and overall lower operational costs.

Let’s make an appointment to see how can help you create an effective maintenance programme and reduce your Total Cost of Ownership.

Preventative motor maintenance:
save up to 51% of your maintenance budget!

Industrial induction motors are found everywhere: Lifts, escalators, cable cars, water sluices, cranes, and even washing machines etc. Motors form the backbone of these devices. Since they are mission critical, a failure of a motor may disrupt the whole production line, crippling your precious infrastructure as a whole. As an example: if the motor fails on a water sluice, the disruption means that ships can’t deliver their cargo on time. Our experience has shown that with preventative motor maintenance, you can save up to 51% of your maintenance budget!

Common sources of industrial motor failure

Of course, each industrial motor has its own characteristics. However, common sources of failure in an industrial induction motor are:

  • Ball bearing and rotor crack/break
  • Stator winding faults
  • Rotor winding faults (rotor bars, end-rings etc.)

Save up to 51% with preventative maintenance

For public infrastructure, industrial motors are mission critical. They need to be regularly be checked under expensive maintenance programmes. With ASN’s IoT solutions, you can predict and prevent equipment failure by monitoring product wear and replacement rates.  And if you recognize a slight disturbance, you can solve them easily. Before little faults have become big and expensive problems. When little faults are recognized, they can be repaired without any signifcant downtime. At a time it suits your client best. As such, you can improve the reliability of your assets and reduce downtime.

Effective and efficient use of an engineer’s precious time

Motor health care starts with sensors. With these sensors, you can monitor the running of your monitors automatically by placing sensors in the vicinity of your motors. When a signal pops up that there might be a problem, an engineer can repair this motor. Previously, engineers did their inspection rounds, giving every motor the same attention. Now, engineers can focus on motors that really need attention.

With preventative maintenance, your customers  can save a fortune and minimise any disruption to service. You can save up to 51% on your maintenance costs with our Preventative Maintenance solutions. They are based on safe contactless sensor measurement, and optimize the life expectancy of your industrial motor. Learn more at: http://www.advsolned.com/motor-health-care/ or drop us a line at: info@advsolned.com

Keeping the employee satisfied: coffee drinks dispenser case

,

A leading coffee manufacturer wanted to add a function to their coffee machines that could fill every kind of mug (small, large, glass, ceramic) fully or half-fully. The requirement was that system must be able to automatically find the dimensions of the mug and track the filling process in real-time without human intervention.

A lot of time is wasted due to coffee spills due to overfilled coffee mugs, but the challenge was to see if this could be done for a reasonably low cost – around 10 EUR.

As no other coffee machine manufacturer had a flexible solution for their coffee machines, this would give them a competitive advantage as well as add a exciting new gadget to their product portfolio.

Find out how we solved this challenge here: coffee drinks dispenser case

How sensor measurement can improve the performance of drones

,

Until now, the professional use of drones is mostly still in an experimenting stage. However, drones are one of the golden nuggets in IoT because they can play a pivotal role, for instance in congested cities and faraway areas for delivery. Further, they can be a great help to give an overview of a large area or for places which are difficult or dangerous to reach.

In one of our previous blogs, we concluded that sensor measurement has mostly been a case of trial and error. In this blog, we list some of the challenges we see for sensor measurement which has to be solved to bring the professional use of drones to full maturity.

Practical challenges which can and must be solved with sensors

Here are some of the challenges we have found:

  • Risk of colliding, with other drones, birds and other air users. Just like other traffic
  • And at point in time, some traffic rules have to be set in place. Sensors can help to let the drone follow these rules
  • How drones can stay on course, even with wind
  • Preventing drones to cross over forbidden (known) areas and unexpected ‘wrong’ areas (e.g. a building or a wood on fire)
  • Challenges with unloading the package:
    • Without damage
    • Without harming people, animals, buildings
    • How the drone will know that the right person gets the package? Can we prevent dogs from biting the package?
  • How to prevent a package from falling? How to alert that a package will probably fall? Or maybe the drone itself? If so, measurement can be taken. Already, there are experiments with self-destruction. But maybe more practical solutions can be found to let the drone aim for a ‘safe area’, such as a park, river, etc. for an ‘emergency landing’.

In all cases, ASN Filter Designer can help with sensor measurement with real-time feedback and the powerful signal analyser? How? Look at ASN Filter Designer or mail us: info@advsolned.com

Do you agree with this list? Do you have other suggestions? Please let us know!

Why motor producers should care about their life expectancy

Motor producers are beginning to see that they can add value through preventative maintenance. However, when we speak to motor producers, sometimes companies begin to laugh when we ask them if they deliver health care monitoring through sensors to their customers already. They think that preventative maintenance is an enemy of their motor production:

“if motors can be made to run longer, we have less to sell”.

And sometimes companies just look glassy-eyed:

“We’re an old-fashioned company”.

Customers want you to deliver solutions, not motors

This is old fashioned thinking indeed. And like every other lagged thinking, these companies will get obsolete.  In old days, you could sell a ‘product’ with features such and such. Nowadays, customers are solely interested in the solution a company delivers. Customers want their business to run smoothly and without downtime. In this way of thinking, a motor is not a thing with a rotor, bearings and such, but it is a means which guarantees that a whole production line runs smoothly and without interruption.

Safe and sound running motors makes a customer satisfied

So, customers are more satisfied when their motor is running properly. And when it begins not to run properly, they want to know beforehand before a slight disturbance has become a real problem. When they know beforehand, they can take proper action on time, which means lesser costs and in most cases without downtime or at least as short as possible. Because downtime affects the production line in the whole. When the motor has really problems, your customer is forced to get their production on hold for a long time. Then customers not only have to face bigger repair costs. But mostly, costs are higher because now the whole production line has fallen out.

Motor health care starts with sensors

By placing sensors in the vicinity of your motors or even building them in, you can monitor the running of your motors automatically. When a signal pops up that there might be a problem, an engineer can repair this motor. This is also the modern way: previously, engineers did their rounds of motor inspections, giving every motor attention. Now, engineers can focus on motors that need attention.

At Advanced Solutions Nederland, we can help you to deliver real solutions to your customers once again. Visit: http://www.advsolned.com/motor-health-care/ or drop us a line at: info@advsolned.com

ASN Filter Designer supports all Arm Cortex-M demo-boards

,

Sometimes clients ask us if we support their Arm Cortex-M based demo-board of choice. The answer is simply: yes!

200+ IC vendors supported

The ASN Filter Designer has an automatic code generator for Arm Cortex-M cores, which means that we support virtually every Arm based demo-board: ST, Cypress, NXP, Analog Devices, TI, Microchip/Atmel and over 200+ other manufacturers. Our compatbility with Arm’s free CMSIS-DSP software framework removes the frustration of implementing complicated digital filters in your IoT appplication. Leaving you with code that is optimal for Cortex-M devices and that works 100% of the time.

The Arm Cortex-M family of microcontrollers are an excellent match for IoT applications. Some of the advantages include:

  • Low power and cost – essential for IoT devices
  • Microcontroller with DSP functionality all-in-one
  • Embedded hardware security functionality
  • Cortex-M4 and M7 cores with hardware floating support (enhanced microcontrollers)
  • Freely available CMSIS-DSP C library: supporting over 60 signal processing functions

Automatic code generation for Arm’s CMSIS-DSP software framework

Simply load your sensor data into the ASN Filter Designer signal analyser and perform a detailed analysis. After identifying the wanted and unwanted components of your signal, design a filter and test the performance in real-time on your test data. Export the designed design to Arm MDK, C/C++ or integrate the filter into your algorithm in another domain, such as in Matlab, Python, Scilab or Labview.

Use the tool in your RAD (rapid application development) process, by taking advantage of the automatic code generation to Arm’s CMSIS-DSP software framework, and quickly integrate the DSP filter code into your main application code.

Proud Arm knowledge partner

We are proud that we are an Arm knowledge partner! As an Arm DSP knowledge partner, we will be kept informed of their product roadmap and progress for the coming years.

Try it for yourself and see the benefits that the ASN Filter Designer can offer your organisation by cutting your development costs by up to 75%!

 

 

Download demo now

 

Licencing information

 

ASP vs DSP – which one do I choose for my IoT application?

,

The sensor measurement challenge

Sensors come in all type of shapes and forms…There are sensors for audio, pressure, temperature, weight, strain, light, humidity…the list is almost endless.

The challenge for most, is that many sensors used in these IoT measurement applications require filtering in order to improve the performance of the sensor’s measurement data in order to make it useful for analysis.

Before jumping into the disussion, let’s first have a look at what sensor data really is….

All sensors produce measurement data. These measurement data contain two types of components:

  • Wanted components, i.e. information what we want to know
  • Unwanted components, measurement noise, 50/60Hz powerline interference, glitches etc – what we don’t want to know

Unwanted components degrade system performance and need to be removed.

So, the challenge for every designer is first to identify what aspects of the data we want to keep, i.e. ‘the wanted components’ and what we need to filter out, the so called ‘unwanted components’. After establishing what need to be filtered out, the challenge then which domain do we tackle this problem in, i.e. the analog domain or in the digital domain ? Each domain has its pros and cons, as we will now discuss for a practical classic sensor measurement challenge using a loadcell.

Loadcell analog

A classic sensor measurement challenge using a loadcell is shown below.

Looking at the hardware setup, we see that have a loadcell excited by a DC excitation voltage, and the general idea is that the sensor’s differential bridge voltage is amplifier by the instrumentation amplifier (IA) when strain is applied.

For those of you unfamiliar with this type of technology, a loadcell is a strain measurement sensor that is comprised of 4 strain gauges, it’s also referred to as a Wheatstone bridge, hence the terminology bridge sensor.

Analysing the signals in the schematic, we see that the differential voltage is passed through 2 filters in order to remove powerline interference and reduce measurement noise.

What are the challenges?

The Instrumentation amplifier (IA) has high impedance inputs, which makes it easy to connect EMI (electromagnet interference) filters to the inputs. However, any mismatches with these filters will generally degrade the instrumentation amplifier’s common-mode rejection ratio, which is undesirable.

The instrumentation amplifier usually has a large gain (100 is quite typical), so any unwanted differential voltage on the inputs will be amplified. Looking at the filters, the notch depth of the powerline cancellation (50Hz/60Hz) filter will be dependent on component tolerances, and will vary over time and with temperature…This is problematic as we’ll discuss in the following section.

Finally, any analog filter or filters will require careful PCB layout and eat up precious board space, which is undesirable for many modern devices.

Loadcell digital – is digital any better ?

Replacing the instrumentation amplifier with a 24bit sigma-delta ADC (analog-to-digital converter), we simplify the circuitry – although many ADCs don’t tolerate high impedance at their inputs, which may be problematic for good RFI (radio frequency interference) filter design.

Nevertheless, some sigma-delta devices have an in-built 50/60Hz notch filter which simplifies the filtering requirement. Although these devices are more expensive, and the choice of sampling frequency is limited, they may be good enough for some applications.

ASP vs DSP

So, which domain is best for solving our measurement challenge, i.e. do we use analog signal processing (ASP) or digital signal processing (DSP)? In order to answer this objectively, we need to first breakdown the pros and cons of each domain.

Analog filters

Let’s first look at an implementation using ASP.

The most obvious advantage is that analog filters have excellent resolution, as there are no ‘number of bits’ to consider. Analog filters have good EMC properties as there is no clock generating noise. There are no effects of aliasing, which is certainly true for the simpler op-amps, which don’t have any fancy chopping or auto-calibration circuitry built into them, and analog designs can be cheap which is great for cost sensitive applications.

Sound great, but what’s the bad news?

Analog filters have several significant disadvantages that affect filter performance, such as component aging, temperature drift and component tolerance. Also, good performance requires good analog design skills and good PCB layout, which is hard to find in the contemporary skills market.

One big minus point is that filter’s frequency response remains fixed, i.e. a Butterworth filter will always be a Butterworth filter – any changes the frequency response would require physically changing components on the PCB – not ideal!

Digital filters

Let’s now look at an implementation using DSP.

The first impression is that a digital solution is more complicated, as seen above with the five building blocks. However, digital filters have high repeatability of characteristics, and as an example, let’s say that you want to manufacture 1000 measurement modules after optimising your filter design. With a digital solution you can be sure that the performance of your filter will be identical in all modules. This is certainly not the case with analog, as component tolerance, component aging and temperature drift mean that each module’s filter will have its own characteristics.

Digital filters are adaptive and flexible, we can design and implement a filter with any frequency response that we want, deploy it and then update the filter coefficients without changing anything on the PCB!

It’s also easy to design filters with linear phase and at very low sampling frequencies – two things that are tricky with analog.

Sound great, but what’s the bad news?

The effect of aliasing and if designing in fixed point, finite word length issues must be taken into account, including the limitation of the ADC and DAC. As there is clock source, digital designs will produce more EMI than analog filters.

Conclusion

When designing modern IoT sensor measurement applications, digital filters offer a greater degree of design flexibility and high repeatability of characteristics over their analog counterparts.

With the advent of modern processor technology and design tooling, it is estimated that about 80% of IoT smart sensor devices are currently deployed using digital devices, such as Arm’s Cortex-M family. The Arm Cortex-M4 is a very popular choice with hundreds of silicon vendors, as it offers DSP functionality traditionally found in more expensive DSPs. Implementation is further simplified by virtue of ASN’s strong partnership with Arm who together provide a rich offering of easy to use filter design tooling and a free DSP software framework (CMSIS-DSP). These tools and well documented software framework allow you to get your IoT application up and running within minutes.

Drones and DC motor control

,

 

Drones and DC motor control – How the ASN Filter Designer can save you a lot of time and effort

Drones are one of the golden nuggets in IoT. No wonder, they can play a pivotal role in congested cities and far away areas for delivery. Further, they can be a great help to give an overview of a large area or places which are difficult or dangerous to reach. However, most of the technology is still in its experimental stage.

Because drones have a lot of sensors, Advanced Solutions Nederland did some research on how drone producing companies have solved questions regarding their sensor technology, especially regarding DC motor control.

Until now: solutions developed with great difficulty

We found out that most producers spend weeks or even months on finding solutions for their sensor technology challenges. With the ASN Filter Designer, he/she could have come to a solution within days or maybe even hours. Besides, we expect that the measurement would be better too.

The biggest time coster is that until now algorithms were developed by handwork, i.e. they were developed in a lab environment and then tested in real-life. With the result of the test, the algorithm would be tweaked again until the desired results were reached. However, yet another challenge stems from the fact that a lab environment is where testing conditions are stable, so it’s very hard to make models work in real life. These steps result in rounds and rounds of ‘lab development’ and ‘real life testing’ in order to make any progress -which isn’t ideal!

How the ASN Filter Designer can help save a lot of time and effort

The ASN Filter Designer can help a lot of time in the design and testing of algorithms in the following ways:

  • Design, analyse and implement filters for drone sensor applications with real-time feedback and our powerful signal analyser.
  • Design filters for speed and positioning control for sensorless BLDC (brushless DC) motor applications.
  • Speed up deployment to Arm Cortex-M embedded processors.

 

Real-time feedback and powerful signal analyser

One of the key benefits of the ASN Filter Designer and signal analyser is that it gives real-time feedback. Once an algorithm is developed, it can easily be tested on real-life data. To analyse the real-life data, the ASN Filter Designer has a powerful signal analyser in place.

Design and analyse filters the easy way

You can easily design, analyse and implement filters for a variety of drone sensor applications, including: loadcells, strain gauges, torque, pressure, temperature, vibration, and ultrasonic sensors and assess their dynamic performance in real-time for a variety of input conditions.  With the ASN Filter Designer, you don’t have do to any coding yourself or break your head with specifications: you just have to draw the filter magnitude specification and the tool will calculate the coefficients itself.

Speed up deployment

Perform detailed time/frequency analysis on captured test datasets and fine-tune your design. Our Arm CMSIS-DSP and C/C++ code generators and software frameworks speed up deployment to a DSP, FPGA or micro-controller.

An example: designing BLDC motor control algorithms

BLDC (brushless DC) BLDC motors have found use in a variety of application areas, including: robotics, drones and cars. They have significant advantages over brushed DC motors and induction motors, such as: better speed-torque characteristics, high reliability, longer operating life, noiseless operation, and reduction of electromagnetic interference (EMI).

One advantage of BLDC motor control compared to standard DC motors is that the motor’s speed can be controlled very accurately using six-step commutation, making it a good choice for precision motion applications, such as robotics and drones.

Sensorless back-EMF and digital filtering

For most applications, monitoring of the back-EMF (back-electromotive force) signal of the unexcited phase winding is easier said than done, since it has significant noise distortion from PWM (pulse width modulation) commutation from the other energised windings. The  coupling  between  the  motor parameters, especially inductances, can induce ripple in the back-EMF signal that is synchronous with the PWM commutation.  As a consequence, this induced ripple on the back EMF signal leads to faulty commutation. Thus, the measurement challenge is how to accurately measure the zero-crossings of the back-EMF signal in the presence of PWM signals?

A standard solution is to use digital filtering, i.e. IIR, FIR or even a median (majority) filter. However, the challenge for most designers is how to find the best filter type and optimal filter specification for the motor under consideration.

The solution

The ASN Filter Designer allows engineers to work on speed and position sensorless BLDC motor control applications based on back-EMF filtering to easily experiment and see the filtering results on captured test datasets in real-time for various IIR, FIR and median (majority filtering) digital filtering schemes. The tool’s signal analyser implements a robust zero-crossings detector, allowing engineers to evaluate and fine-tune a complete sensorless BLDC control algorithm quickly and simply.

So, if you have a measurement problem, ask yourself:

Can I save time and money, and reduce the headache of design and implementation with an investment in new tooling?

Our licensing solutions start from just 125 EUR for a 3-month licence.

Find out what we can do for you, and learn more by visiting the ASN Filter Designer’s product homepage.