Advanced Analogue and Digital Encryption Methods

Presented by: Dr. S. Sarpal

Background

- Term given to a mathematical algorithm OR a set of known sequences.
- Mixed with message to hide the meaning of content.
- Needed for personal privacy or security applications.
- Many analogue and digital encryption methods available.
- Earliest Ciphers - Vedic scriptures, the Egyptians, Julius Caesar
- Infamous example: Military communications (Enigma).

Cryptographic Jargon

- Crypto system.
- Plaintext (data to be encrypted).
- Ciphertext (encrypted data).
- Key.
- Alice, Bob, Carol and Dave.
- Eve (the eavesdropper!)
- Spectrum inversion:
- AM modulation concept (inverted lower sideband)
- Variable split band (VSB) and rolling codes used for greater security.
- Spectrum shift (AM concept, upper sideband).
- Cut and rotate (much more effective!)

General comments :

- Cheap to implement, does not require specialised hardware but offers limited security.
- Encrypted speech is discenable in some configurations.

Spectrum Inversion Example

Using trigonometric identities...

$$
\cos \left(w_{c} t\right) \cdot \cos \left(w_{1} t\right)=\frac{1}{2} \cos \left(w_{c}-w_{1}\right)+\frac{1}{2} \cos \left(w_{c}+w_{1}\right)
$$

- Analogue multiplier used.
- Hilbert transform can be used to remove upper sideband (DSP or computer implementation).

Audio VSB Spectrum Inversion Example

- Rolling code used to determine split point frequency (VSB).
- Split point frequency updated every 500 ms .
- Original
- Encrypted

- Increased security than single carrier frequency.
- Low cost ASIC implementation available.
- Symmetric (or secret key) encryption:
- Same key used for encryption and decryption.
- Fast operation on computer, DSP or micro-controller.
- Examples: PRBS, DES, triple DES, RC2, IDEA, Blowfish, CAST-128, Skipjack, AES...
- Asymmetric (or public key) encryption:
- Different keys for encryption and decryption.
- Slow operation, best suited to a DSP or ASIC.
- Examples: PGP, RSA, Diffie-Hellman, DSA, Elgamal ...

General comments:

- Usually more expensive to implement than analogue methods.
- High level of security at much greater computation expense.

Simple digital encryption (PRBS)

Asymmetric encryption (the RSA algorithm)

- Introduced in 1977.
- Named after its creators - Rivest, Shamir and Adleman.
- Used for secure encryption and digital signatures.
- Patented in 1983, but released into the public domain in September 2000.
- Commonly used - PGP, SSH, SSL, SET (Visa, Mastercard).
- Gets its security from the difficulty of factorizing large numbers.
- 1024-bit key is considered as the smallest key for secure communication.
- Many references have demonstrated that 300-bit or shorter keys can be broken in few hours using a simple laptop and freely available software!
- Two random large prime numbers, \mathbf{p} and \mathbf{q} are chosen. For maximum security, \mathbf{p} and \mathbf{q} should be of equal length.
- Calculate product $\mathbf{n = p} \times \mathbf{q}$
- Calculate random encryption key, \mathbf{e} such that \mathbf{e} and $(\mathbf{p}-\mathbf{1}) \times(\mathbf{q}-\mathbf{1})$ are relatively prime.
- Finally, extended Euclidean algorithm is used for computing the decryption key d, such that:

$$
e \times d=1 \bmod (p-1) \times(q-1)
$$

PUBLIC KEY: e, n
PRIVATE KEY: d

Overview of the RSA algorithm Encryption/decryption

Encryption

To encrypt our plaintext message \mathbf{m} using our public key, e:

$$
c=m^{e} \bmod n
$$

Example: $m=123, p=29, q=31, e=13, d=517$

$$
c=123^{13}(\bmod [29 \times 31])=402
$$

Decryption

To decrypt the ciphertext c using our private key, d:

$$
\begin{gathered}
m=c^{d} \bmod n \\
m=402^{517}(\bmod [29 \times 31])=123
\end{gathered}
$$

Thank you for your attention, please feel free to ask any questions.

