

 ASN Filter Designer
Filter Script user's guide

March 2017

ASN15-DOC002, Rev. 8

For public release

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 2
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

Legal notices

All material presented in this document is protected by copyright under international copyright laws. Unless otherwise
stated in this paragraph, no portion of this document may be distributed, stored in a retrieval system, or reproduced
by any means, in any form without Advanced Solutions Nederland B.V. prior written consent, with the following
exception: any person is hereby authorized to store documentation on a single computer for personal use only and to
print copies for personal use provided that the documentation contains Advanced Solutions Nederland B.V. copyright
notice.

No licenses, expressed or implied are granted with respect to any of the technology described in this document.
Advanced Solutions Nederland B.V. retains all intellectual property rights (IPR) associated with the technology
described within this document.

The information presented in this document is given in good faith and although every effort has been made to ensure
that it is accurate, Advanced Solutions Nederland B.V. accepts no liability for any typographical errors.

In no event will Advanced Solutions Nederland B.V. be liable for any damages resulting from any defects or
inaccuracies in this document, even if advised that such damages may occur.

Advanced Solutions Nederland B.V.

www.advsolned.com

support@advsolned.com

Copyright © 2017 Advanced Solutions Nederland B.V. All rights reserved.

Technical documentation feedback

If you would like to make a suggestion or report an error in our documentation, please feel free to contact us. You are

kindly requested to provide as much information as possible, including a full description of the error or suggestion,

the page number and the document number/description. All suggestions or errors may be sent to:

documentation@advsolned.com

file:///C:/Advanced%20Solutions%20Nederland/Documents/2011/www.advsolned.com
file:///C:/Advanced%20Solutions%20Nederland/Documents/2011/support@advsolned.com
file:///C:/Advanced%20Solutions%20Nederland/Documents/2011/documentation@advsolned.com

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 3
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

Summary

This user's guide is intended to provide users of the ASN filter designer with a concise overview of the symbolic
math scripting tool.

The symbolic filter script session may be started by selecting Symbolic

Filter Script in the options menu in the P-Z editor.

The scripting language supports over 40 scientific commands and

provides designers with a familiar and powerful programming language,

while at the same time allowing them to implement complex symbolic mathematical expressions for their filtering

applications. The scripting language offers the unique and powerful ability to modify parameters on the fly with the

so called interface variables, allowing for real-time updates of the resulting frequency response. This has the

advantage of allowing the designer to see how the coefficients of the symbolic transfer function expression affect

the frequency response and the filter's time domain dynamic performance.

Resources

ASN15-DOC001 ASN filter designer user’s guide.

https://youtu.be/CUC0KxegbU0 ASN Filter script in a nutshell (video).

Text Book Understanding digital signal processing, R. Lyons.

http://www.advsolned.com/downloads/ASN15-DOC001.pdf
https://youtu.be/CUC0KxegbU0
https://amzn.com/0137027419

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 4
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

1. Filter script IDE

The filter script IDE (integrated development environment) provides you with all of the necessary features in order to

design and evaluate your symbolic filter concept. The IDE output is coupled to the filter designer GUI, providing a fully

interactive method of customising your filter transfer function on the fly.

As seen, the IDE is split up into a code editor and an output window. The IDE differs from other scripting IDEs in that

all executed code appears in the output window, and there is no provision for entering and evaluating expressions in

the output window directly.

As with all standard code editors, right clicking in the editor produces a standard options menu for copying, pasting,

cutting and adding/removing comments respectively.

code editor

output

compile and run stop interface variables

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 5
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

1.1. Code structure

The primary purpose of the symbolic filter script is to obtain values for the following three inputs:

 Num: the numerator coefficients

 Den: the denominator coefficients

 Gain: the filter gain

In order to provide a flexible means of modifying parameters on the fly (see section 1.2), the code is spilt up into two

sections:

 Initialisation: contains all definitions of interface variables and any constant expressions. This section is run

only once after compilation.

 Main: contains the bulk of the code, including the Num, Den and Gain expressions. Any expressions

containing interface variables will be updated when modified via the interface variable GUI (see section 1.2.1).

The basic code structure is summarised below:

The ClearH1 expression allows you to remove the H1 filter (primary) from the filter cascade and just use the H2

(secondary) filter. The relationship of the H1 and H2 filters is shown below:

As seen, the main FIR/IIR filter designed via the filter designer GUI is assigned to the primary filter, H1. All poles and

zeros defined via the filter script are added to a secondary filter block, H2. The H2 filter block implements the filter as

a single section (i.e. no biquads) IIR, which eases the implementation, but also the advantage of assigning poles to

an FIR primary filter. In the case of no poles, the H2 filter becomes an FIR filter.

It should be noted that a direct form (single section) implementation may become problematic (due to

numerical stability issues) for higher IIR filter orders, especially when poles are near to the unit circle.

ClearH1;

interface variables
constant expressions

Main()

{

 Num = {};

 Den = {};

 Gain = 1;

}

H1 H2

FIR/IIR filter designed via the
filter designer

Filter script filter

Frequency
response

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 6
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

1.2. Interface variables

Central to the interactivity of the tool are the so called interface variables. An interface variable is simply stated: a

scalar input variable that can be used modify a symbolic expression without having to re-compile the code.

As discussed in section 1.1, interface variables must be defined in the initialisation section of the code, and may

contain constants (such as, fs and pi - see section 2.7 for the complete list) and simple mathematical operators,

such as multiply * and / divide. Where, adding functions to an interface variable is not supported.

An interface variable is defined as vector expression:

interface name = {minimum, maximum, step_size, default_value};

where, all entries must be real scalars values. Vectors and complex values will not compile.

Examples

interface alpha = {-1,1,0.1,0.3};

sets the variable alpha to 0.3, and bounds the range
to ±1, in steps of 0.1.

interface fc = {-fs/2,fs/2,1,fs/10};

sets the variable fc to fs/10, and bounds the range to
±fs/2, in steps of 1.

1.2.1. User interface

All interface variables are modified via the interface variable GUI, by clicking on

As seen, a list of valid interface variables is presented together with their current values. Where, the list is

automatically updated at compilation time in order to ensure that it matches the user code.

double click to edit value

modify selected variable
value by adjusting slider

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 7
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

2. The Scripting language

The scripting language supports over 40 scientific commands and provides designers with a familiar and powerful

programming language for designing filters with the most demanding specifications.

2.1. Trigonometrical functions

2.2. Vector functions

Function Syntax Description

angle y = angle(x) Compute the inverse tangent (four quadrant)
cos y = cos(x) Compute the cosine
cosh y = cosh(x) Compute the hyperbolic cosine
sin y = sin(x) Compute the sine

sinh y = sinh(x) Compute the hyperbolic sine
tan y = tan(x) Compute the tangent

tanh y = tanh(x) Compute the hyperbolic tangent

Function Syntax Description

cols y = cols(x) Gets number of columns in the vector x
conv y = conv(a,b) Computes the linear convolution of input vectors a and b.

Where, the length of y is equal to length(a) +
length(b)-1

diff y = diff(x) Gets the difference between adjacent values of the vector x

eldef A(3,0) = eldef(5) Sets the vector element value to the given value

length y = length(x) Gets the vector length
max y = max(x) Gets the maximum of the vector x
mean y = mean(x) Gets the mean of the vector x
min y = min(x) Gets the minimum of the vector x
ones y = ones(N) Vector of 1s of length N
poly y = poly(x) Convert roots to polynomial
reverse y = reverse(x) Flip vector elements up-to-down
roots y = roots(x) Get the roots of polynomial x
rows y = rows(x) Gets the number of rows in vector x
series y = series(min,step,max) Creates a data series - see section 2.6

sortup y = sortup(x) Sort vector in ascending order: smallest first, largest last
sortdown y = sortdown(x) Sort vector in descending order: largest first, smallest last

stddev y = stddev(x) Gets the standard deviation of x

sum y = sum(x) Gets the sum of vector x

transpose y = transpose(x) Transpose vector x

zeros y = zeros(N) Vector of 0s of length N

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 8
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

2.3. General functions

Function Syntax Description

abs y = abs(x) Compute the absolute value(s).
ceil y = ceil(x) Round up to infinity.
conj y = conj(x) Compute the complex conjugate.
exp y = exp(x) Compute the exponential of the argument, i.e. ey.
pow2 y = pow2(x) Compute the element to the power of 2, i.e 2y
pow10 y = pow10(x) Compute the element to the power of 10, i.e 10y

flip y = flip(x) Flip the real and imaginary components of x
floor y = floor(x) Round down to -∞

imag y = imag(x) Get the imaginary component of x
ln y = ln(x) Natural log

log10 y = log10(x) Log base 10
log2 y = log2(x) Log base 2

logn y = logn(N,x) Log of x to base N

newpz y = newpz(mag,freq)

Define a root: 0 ≤ 𝑚𝑎𝑔 ≤ 5 and 0 ≤ 𝑓𝑟𝑒𝑞 ≤ ±𝑓𝑠/2

 𝑟𝑜𝑜𝑡𝑠 = { (𝑧 − 𝑟1𝑒
−𝑖𝜃1), (𝑧 − 𝑟2𝑒

−𝑖𝜃2),… }

Where, 𝜃𝑥 =
2𝜋𝑓

𝑓𝑠

real y = real(x) Get the real component of x

round y = round(x) Round x

sqr y = sqr(x) Square of x

sqrt y = sqrt(x) Square root of x

2.4. Math operators

Operator Example syntax Description

+ a+b Addition.
- a-b Subtraction.

* A*B Multiplication.

/ A/B Division.

.* A.*B Element-by-element vector multiplication.

./ A./B Element-by-element vector division.

.^ a.^N Element-by-element vector to the power.

^ a^N Vector to the power.

! N! Factorial.

2.5. Specialised methods

Function Syntax Description

savgolay y = savgolay(n,p)
Design an FIR Savitzky-Golay lowpass smoothing filter of

length n and polynomial p

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 9
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

2.6. Variables and data initialisation

Function Description

General
All variables may contain upper and lower case characters, and numbers. e.g. Num1,
myGain, alpha15

Interface Variables The interface keyword must be used to define all interface variables.

Matrices

A generalised matrix is defined as A(rows,columns). Although matrix assignment
is not supported, certain vector operations may result in a matrix result, e.g. the vector
multiplication: A=a*transpose(a). All data indexes run from 0...N, you may
access a matrix element at row R and column M as: y=A(R,M). However, you may
also access a range of values using the : keyword, e.g. Y=A(3:5,1:2)which
produces a new matrix Y. For modifying a value of a matrix/vector, use the eldef

function, e.g. a(2,1)=eldef(5)

Vector assignment

By default, a vector is defined as an array with multiple rows and one column. It may
contain expressions, variables and constants and must be enclosed in braces { }
with comma delimitation.

Example: b = {1,0,3.4,0,1};
Example: A = {1,-2*cos(TwoPi*fc/fs),1};

Vector manipulation

In order to accommodate transposed vectors, all vectors are defined as a generalised
matrix, i.e. A(rows,columns). By default, a vector of length N is defined as
A(N,1), whereas a transposed vector is defined as A(1,N). As all data indexes run
from 0...N, you may access vector element M as: y=A(M,0). However, you may also
access a range of values using the : keyword, e.g. y=A(3:5,0). For modifying a
value of a vector, use the eldef function.

Example

a = {1,0,3.4,0,1}; // assign five elements to vector a
a(2,0)=eldef(5); // set element three to 5
y=a(0,0); // get element zero and assign it to y

Data series

A real valued data series can be created with the following syntax:

y = series(min,step,max)

where, step represents the step size between min (minimum) and max (maximum).

Example

a=series(-12,1,1.2);

User comments
All user comments must be preceded with the // keyword. Where, the /* */
syntax is not supported.

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 10
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

2.7. System variables and reserved constants

There are several system variables and constants which can be used in every script and expression.

Variable Description

fs
The fs variable specifies the system sampling frequency in its frequency scale, i.e.

50MHz is given as 50, rather than 50e6 Hz

Ts The Ts variable specifies the system sampling period Ts=1/fs

pi 3.14159265358979

Twopi 6.28318530717959

i Complex number token, √−1

2.8. Mandatory keywords

The following keywords must be present in every script.

Variable Description

Main()
Main()is used to seperate the initialisation code from the "main" code - see

section 1.1 for more information.

ClearH1
The ClearH1 keyword is not mandatory, but if included will delete the H1 filter

from the cascade.

Den Den specifies the denominator filter coefficients. This must be a vector.

Num Num specifies the denominator filter coefficients. This must be a vector.

Gain Gain specifies the filter gain. This must be real.

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 11
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

3. Example scripts

The following section is a collection of example scripts bundled with the software. All script files are .afs files

which can be found in the Scripts\Examples directory.

3.1. Moving average filter (movingaverage.afs)

The moving average (MA) filter is probably one of the most

widely used FIR filters due to its conceptual simplicity and

ease of implementation. However, despite its simplicity, the

moving average filter is optimal for reducing random noise

while retaining a sharp step response. Where a simple rule

of thumb states that the amount of noise reduction is equal

to the square-root of the number of points in the average. For

example, an MA of length 9 will result in a factor 3 noise

reduction.

Reference: Understanding Digital Signal Processing,
Chapter 5, R. G. Lyons

The following script implements an adjustable length moving

average filter. The interface variable L is used to set the filter

length between 1 and 100.

ClearH1; // clear primary filter from cascade

interface L = {1,100,1,10}; // model length (order = length - 1)

Main()

Num = {ones(L)}; // moving average filter coefficients

Den = {1};

Gain = 1/L;

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 12
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

3.2. HPF (BilinearHPF.afs)

It is sometimes useful to transform an analogue filter into

its digital/discrete equivalent. Although there are several

transformation methods, the Bilinear z-transform (BZT) is a

very popular method and is therefore used for this example.

Central to the BZT concept is the S-Z transformation which

maps an analogue transfer function, 𝐻(𝑠) into its digital

equivalent 𝐻(𝑧):

𝑠 =
2

𝑇

𝑧 − 1

𝑧 + 1

where, T is the discrete system’s sampling period. However,

substituting 𝑠 = 𝑒𝑗Ω and 𝑧 = 𝑒𝑗𝑤 into the above equation

and simplifying, we see that there is actually a non-linear

relationship between the analogue, Ω and discrete, w

frequencies. This relationship is shown below and is due to

the nonlinearity of the arctangent function.

 𝑤 = 2𝑡𝑎𝑛−1 (
Ω𝑇

2
)

Design example

A first order Laplace highpass transfer function is given by:

𝐻(𝑠) =
𝑠

𝑠 + 𝑤
 ; w = tan (

𝜋𝑓

𝑓𝑠
)

Applying the BZT to 𝐻(𝑠), we obtain:

𝐻(𝑧) =
1

(𝑤 + 1)
[

1 − 𝑧−1

1 +
𝑤 − 1
𝑤 + 1

𝑧−1
]

The implementation of 𝐻(𝑧) is given below, where the cutoff frequency (-3dB point) is adjustable between 0 ≤

𝑓 ≤ 𝑓𝑠/2

ClearH1; // clear primary filter from cascade

interface f = {0,fs/2,1,10}; // interface variable definition

Main()

w=tan(f*pi/fs);

Num = {1,-1}; // define numerator coefficients

Den = {1,(w-1)/(w+1)}; // define denominator coefficients

Gain = 1/(w+1); // define gain

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 13
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

3.3. Second order all-pass filter (SecondOrderAllPass.afs)

All-pass filters provide a simple way of altering/improving

the phase response of an IIR without affecting its magnitude

response. As such, they are commonly referred to as phase

equalisers and have found particular use in digital audio

applications.

A second order all-pass filter is defined as:

𝐻(𝑧) =
𝑟2 − 2𝑟𝑐𝑜𝑠 (

2𝜋𝑓𝑐
𝑓𝑠

) 𝑧−1 + 𝑧−2

1 − 2𝑟𝑐𝑜𝑠 (
2𝜋𝑓𝑐
𝑓𝑠

) 𝑧−1 + 𝑟2𝑧−2

Notice how the numerator and denominator coefficients are

arranged as mirror image (mirror-image pair) of one another.

Reference: The digital All-pass Filter: A versatile signal
processing building block, Regalia, Mitra et al., Proceedings IEEE, vol 76, January 1988.

The following script implements the symbolic transfer function with two interface variables radius and fc.

ClearH1; // clear primary filter from cascade

interface radius = {0,2,0.01,0.5}; // radius value

interface fc = {0,fs/2,1,fs/10}; // frequency value

Main()

Num = {radius^2,-2*radius*cos(Twopi*fc/fs),1}; // mirror image pair

Den = reverse(Num);

Gain = 1;

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 14
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

3.4. Allpass Peaking/Bell filter (AllpassPeaking.afs)

A Bell or Peaking filter is a type of audio

equalisation filter that boosts or attenuates the

magnitude of a specified set of frequencies around

a centre frequency in order to perform magnitude

equalisation. As seen in the plot on the right-hand

side, the filter gets its name from the shape of the

its magnitude spectrum (blue line) which resembles

a Bell curve.

A Bell filter can be constructed from an all-pass

configuration (see section 3.3) by the following

transfer function:

𝐻(𝑧) =
(1 + 𝐾) + 𝐴(𝑧)(1 − 𝐾)

2

where, 𝐴(𝑧) is the all-pass filter component:

𝐻(𝑧) =
1

2
[(1 + 𝐾) +

𝑘2 + 𝑘1(1 + 𝑘2)𝑧
−1 + 𝑧−2

1 + 𝑘1(1 + 𝑘2)𝑧
−1 + 𝑘2𝑧

−2⏟
all-pass filter

(1 − 𝐾)]

ClearH1; // clear primary filter from cascade

interface BW = {0,2,0.1,0.5}; // filter bandwidth

interface fc = {0, fs/2,fs/100,fs/4}; // peak/notch centre frequency

interface K = {0,3,0.1,0.5}; // gain/sign

Main()

k1=-cos(2*pi*fc/fs);

k2=(1-tan(BW/2))/(1+tan(BW/2));

Pz = {1,k1*(1+k2),k2}; // define denominator coefficients

Qz = {k2,k1*(1+k2),1}; // define numerator coefficients

Num = (Pz*(1+K) + Qz*(1-K))/2;

Den = Pz;

Gain = 1;

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 15
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

3.5. AllpassNotch (AllpassNotch.afs)

A notch filter can be constructed from an all-pass

configuration (see section 3.3) by the following

transfer function:

𝐻(𝑧) =
1

2
[1 + 𝐴(𝑧)]

where, 𝐴(𝑧) is the all-pass filter component:

𝐻(𝑧) =
1

2
[1 +

𝑘2 + 𝑘1(1 + 𝑘2)𝑧
−1 + 𝑧−2

1 + 𝑘1(1 + 𝑘2)𝑧
−1 + 𝑘2𝑧

−2⏟
all-pass filter

]

𝑘1 = −cos (
2𝜋𝑓

𝑓𝑠
) controls the centre frequency of the

notch, and 𝑘2 =
1−tan (𝐵𝑊/2)

1+tan (𝐵𝑊/2)
 controls the bandwidth

of the notch.

Reference: The digital All-pass Filter: A versatile signal processing building block, Regalia, Mitra et al., Proceedings
IEEE, vol 76, January 1988.

ClearH1; // clear primary filter from cascade

interface BW = {0,2,0.1,0.5}; // interface variable definition

interface fc = {0, fs/2,fs/100,fs/4};

Main()

k1=-cos(2*pi*fc/fs);

k2=(1-tan(BW/2))/(1+tan(BW/2));

Den = {1,k1*(1+k2),k2}; // define denominator coefficients

Num = {k2,k1*(1+k2),1}; // define numerator coefficients

Num = (Num+Den)/2;

Gain = Num(0,0)/Den(0,0); // compsensate gain for normalisation

Num=Num/Num(0,0); // normalise numerator

Den=Den/Den(0,0); // normalise denominator

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 16
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

3.6. Notch (Notch.afs)

The primary purpose of a Notch filter is to attenuate (minimize) a

specific frequency point in the spectrum, while leaving the rest of

the spectrum unaffected. Notch filters are extensively used in

audio and sensor signal processing applications in order to

minimize the effects of 50/60Hz powerline interference on

measured signals.

A notch filter may be defined as:

𝐻(𝑧) =
1 − 2 cos𝑤𝑐𝑧

−1 + 𝑧−2

1 − 2𝑟 cos𝑤𝑐𝑧
−1 + 𝑟2𝑧−2

where, 𝑤𝑐 =
2𝜋𝑓𝑐

𝑓𝑠
 controls the centre frequency, 𝑓𝑐 of the notch,

and 𝑟 controls the bandwidth of the notch. The symbolic
expressions are implemented as follows:

ClearH1; // clear primary filter from cascade

interface r = {0,1,0.1,0.5}; // radius range

interface fc = {0, fs/2,fs/100,fs/4}; // centre frequency range

Main()

wc=Twopi*fc/fs;

Num = {1,-2*cos(wc),1}; // define numerator coefficients

Den = {1,-2*r*cos(wc),r^2}; // define denominator coefficients

Gain = sum(Den)/sum(Num); // normalise gain at DC

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 17
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

3.7. Comb (comb.afs)

The frequency response of a comb filter consists of a series of regularly-spaced troughs, giving the appearance of a

comb. Where the spacing of each trough appears at

either odd or even harmonics of the desired

fundamental frequency. Thus, an FIR comb filter can be

described by the following transfer function:

𝐻(𝑧) = 1 + 𝛼𝑧−𝐿

where, 𝛼 is used to set the Q (bandwidth) of the notch

and may be either positive or negative depending on

what type of frequency response is required. In order to

elaborate on this, negative values of 𝛼 have their first

trough at DC and their second trough at the fundamental

frequency. Clearly this type of comb filter can be used

to remove any DC components from a measured

waveform if so required. All subsequent troughs appear

at even harmonics up to and including the Nyquist

frequency.

Positive values of 𝛼 on the other hand, only have

troughs at the fundamental and odd harmonic

frequencies, and as such cannot be used to remove any

DC components.

ClearH1; // clear primary filter from cascade

interface L = {4,20,1,5}; // filter length

interface alpha = {-1,1,0.01,0.99};

Main()

Num = {1,zeros(L-1),alpha}; // numerator coefficients

Den = {1};

Gain = 1/sum(abs(Num));

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 18
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

3.8. Fractional Farrow Delay

In signal processing, the need sometimes arises to nudge or fine-tune the sampling instants of a signal by a fraction

of a sample. An FIR Farrow delay filter is

typically employed to achieve this task, and

may be combined with a traditional integer

delay line in order to achieve a universal

fractional length delay line.

A Fractional delay based on an FIR Farrow

structure may be defined as:

𝐻(𝑧) = (1 − 𝛼) + 𝛼𝑧−1; 0 ≤ 𝛼 ≤ 1

Which produces a fractional linear delay of 𝛼

between 0 and 1 samples. However, a more

universal building block can be achieved by

combining the Farrow delay structure with an

integer delay, ∆

𝐻(𝑧) = (1 − 𝛼)𝑧−∆ + 𝛼𝑧−(∆+1)

The plot shown on the right shows the

magnitude (blue) and phase (purple) spectra

for ∆ = 9, 𝛼 = 0.52. As seen, the fractional delay element results in a non-flat magnitude spectrum at higher

frequencies.

ClearH1; // clear primary filter from cascade

interface alpha = {0,1,0.02,.5}; // fractional delay

interface D = {1,30,1,10}; // integer delay

Main()

Num = {zeros(D),1-alpha,alpha}; // numerator coefficients

Den = {1}; // denominator coefficient

Gain = 1/sum(Num); // normalise gain at DC

Reference: ASN15-DOC002 Rev 8

Document Status: Public release Page: 19
Copyright © 2017 Advanced Solutions Nederland BV. All rights reserved.

Document Revision Status

Rev. Description Date

1 Document released. 26/06/2015

2 Updated examples. 12/10/2015

3 Updated examples and text. 03/12/2015

4 Updated examples and text. 25/01/2016

5 Added section 3.8. 18/02/2016

6 Updated text. 06/06/2016

7 Updated references. 30/06/2016

8 Updated text and added section 2.5. 07/03/2017

	Legal notices
	Technical documentation feedback
	Summary
	1. Filter script IDE
	1.1. Code structure
	1.2. Interface variables
	1.2.1. User interface

	2. The Scripting language
	2.1. Trigonometrical functions
	2.2. Vector functions
	2.3. General functions
	2.4. Math operators
	2.5. Specialised methods
	2.6. Variables and data initialisation
	2.7. System variables and reserved constants
	2.8. Mandatory keywords

	3. Example scripts
	3.1. Moving average filter (movingaverage.afs)
	3.2. HPF (BilinearHPF.afs)
	3.3. Second order all-pass filter (SecondOrderAllPass.afs)
	3.4. Allpass Peaking/Bell filter (AllpassPeaking.afs)
	3.5. AllpassNotch (AllpassNotch.afs)
	3.6. Notch (Notch.afs)
	3.7. Comb (comb.afs)
	3.8. Fractional Farrow Delay

	Document Revision Status

