
© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Deploying an EMG RMS envelope
measurement application to an
STM32 Discovery kit using the
ASN Filter Designer

Author: Dr. Sanjeev Sarpal

Application note (ASN-AN024) July 2023 (Rev 4)

Synopsis

Electromyography (EMG) is an experimental biomedical engineering technique for evaluating and recording the electrical

activity produced by skeletal muscles. The EMG is performed using an instrument called an electromyograph, where the

electromyograph detects the electrical potential generated by muscle cells when these cells are electrically or

neurologically activated. The captured signals can be analysed by signal processing techniques in order to detect

medical abnormalities and to analyse the biomechanics of human movement.

This application note demonstrates the design of a suitable EMG filtering chain using the ASN Filter Designer's

FilterScript language and its interactive customisation for an RMS (root-mean-square) envelope measurement signal

processing application. Details are given on how the developed application may be deployed to an STM32 Discovery kit

for evaluation in a real-time embedded application. Additional details are also given about deployment to Matlab and

Python for further analysis in popular scientific computing environments.

Introduction

The standard building blocks required for an EMG RMS envelope measurement application are shown below:

A description of each building block is given overleaf.

baseline

remover

fullwave
rectification()

A3

50/60Hz

notch

moving

average

EMG

 data 1

ξ2

RMS amplitude

EMG RMS

envelope

A2 A1

abs()

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Building block Equation Description

A1
1 − 𝑧−1

(𝑤𝑐 + 1) + (𝑤𝑐 − 1) 𝑧−1

A baseline removal filter (DC removal) can be

realised with a simple first order pole-zero filter.

Where, Where, 𝑤𝑐 = 𝑡𝑎𝑛(
𝜋𝑓𝑐

𝑓𝑠
) is used to set the

highpass filter's bandwidth.

A2
1 − 2 cos 𝑤𝑐𝑧−1 + 𝑧−2

1 − 2𝑟 cos 𝑤𝑐𝑧−1 + 𝑟2𝑧−2

A notch filter. Where, 𝑤𝑐 =
2𝜋𝑓𝑐

𝑓𝑠
 controls the centre

frequency, 𝑓𝑐 (50 or 60Hz) of the notch, and 𝑟

controls the bandwidth of the notch.

Fullwave rectification abs() Abs() function.

A3 1 + 𝑧−1 + 𝑧−2 +... 𝑧−𝑀 An Mth order moving average filter.

1. Symbolic mathematical filter scripting language (ASN FilterScript)

As seen, there are three filters and two mathematical operations. Combining the A1 and A2 filters into one IIR filter

(H2), we can implement the above operation in the ASN Filter Designer with the Symbolic Filter Scripting language.

The scripting language (ASN FilterScript) supports over 82 scientific commands and provides designers with a familiar

and powerful programming language, while at the same time allowing them to implement complex symbolic

mathematical expressions for their filtering applications.

ASN FilterScript offers the unique and powerful ability to modify parameters on the fly with the so-called interface

variables, allowing for real-time updates of the resulting frequency response. This has the advantage of allowing the

designer to see how the coefficients of the symbolic transfer function expression affect the frequency response and

the filter's time domain dynamic performance.

Please refer to the ASN Filter Designer FilterScript reference guide for a detailed overview.

https://www.advsolned.com/asn-filterscript-reference/

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

1.1. ASN FilterScript code

FilterScript’s dcremover() and notch() functions can be used to implement the A1 and A2 filters respectively.

Notice that the dcremover() function just requires a single cut-off frequency in Hz, and that the notch() function

requires a centre frequency, fc and bandwidth, BW in Hz.

The dcremover() and notch() functions produce two digital filter objects, A1 and A2. As such, these two objects

can be merged into a single filter1 object (Hd) via the augment() function. The “symbolic” keyword sets the

display format of the resulting digital filter object.

The code snippet shown below demonstrates how to design and merge three filters implementing a highpass and a

double notch at 50Hz and 60Hz respectively,

1.1.1. Interface variables and the H1 filter

FilterScript allows developers to modify parameters on the fly with the so-called interface variables, allowing for real-

time updates of the resulting frequency response without modifying and recompiling the script.

An interface variable is defined as a vector expression:

interface name = {minimum, maximum, step_size, default_value};

where all entries must be real scalar values. Vectors and complex values will not compile.

The ClearH1 keyword allows you to remove the H1 filter (primary) from the tool’s internal filter cascade and just use

the H2 (secondary) filter. The relationship of the H1 and H2 filters is shown below:

As seen, the main FIR/IIR filter designed via the filter designer GUI is assigned to the primary filter, H1. All poles and

zeros defined via the filter script are added to a secondary filter block, H2.

1 augment() calls the conv() function that is the same as performing an algebraic multiplication of the numerator and
denominator filter polynomials.

A1=dcremover(fl,"symbolic"); // A1 filter

A2=notch(fc,BW,"symbolic"); // A2 filter

Hd=augment(A1,A2,"symbolic"); // merge filters

A1=dcremover(fl,"symbolic"); // A1 highpass filter

A2=notch(50,BW,"symbolic"); // A2 50Hz filter

A3=notch(60,BW,"symbolic"); // A3 60Hz filter

Hd=augment(A1,A2,"symbolic"); // merge A1 and A2 filters

Hd=augment(Hd,A3,"symbolic"); // merge A3 with Hd filters

H1

FIR/IIR filter designed via the

filter designer GUI

FilterScript filter

Frequency

response
H2

https://www.advsolned.com/dc-component-remover/
https://www.advsolned.com/notch-filter/
https://www.advsolned.com/asn-filterscript-reference/#toggle-id-1

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

The complete FilterScript code becomes (including interface variables):

2. Mathematical functions and post filtering

The fullwave rectification and
1

ξ2
 mathematical operations can be summarised as

one RMS () operation, i.e.
𝑎𝑏𝑠()

ξ2
 and implemented via the Output Math Function in

the signal analyser. This scaling trick is made possible as H3 is a linear filter (see

the section on post filtering), although this operation is equivalent to using

abs() with an output Gain of 0.707.

The tool supports the following mathematical functions: abs, angle, ln,

RMS, sqr and sqrt.

2.1. Post Filtering

The ASN Filter Designer's signal analyser implements an extra

post filter, H3. Unlike the H1 and H2 filters, the H3 filter is

always lowpass and is preceded by an optional mathematical

function operation (see above).

For the application considered herein, the H3 moving average

filter can be implemented in the signal analyser's H3 post filter,

The abs() function is used for fullwave rectification.

The Fourier series for |𝑠𝑖𝑛(𝑤𝑡)| results in a DC gain

scaling factor of
2

𝜋
 which should be corrected by

setting the Output Gain to
𝜋

2
 (1.571).

ClearH1; // clear primary filter from cascade

interface BW = {1,4,0.5,1}; // notch BW

interface fc = {0, fs/2,fs/100,fs/4}; // notch cut-off frequency

interface fl = {0, 10,0.5,0.5}; // hpf cut-off frequency range

Main()

A1=dcremover(fl,"symbolic"); // A1 filter

A2=notch(fc,BW,"symbolic"); // A2 filter

Hd=augment(A1,A2,"symbolic"); // merge filters

Num=getnum(Hd);

Den=getden(Hd);

Gain=getgain(Hd);

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

3. Signal cascade, building blocks and frequency response

The tool’s complete signal cascade is shown below.

Notice that the Input math () and H1 filter blocks are disabled for the application considered herein. The actual signal

cascade used for the application is therefore:

H1 H2

FIR/IIR filter designed

via the filter designer

FilterScript filter Post filter

H3
Output

math()

Math function

y(n)

x(n)
Signal

generator

Input

 math()

H2

FilterScript filter Post filter

(Moving average)

H3
Output

math()

RMS() function

y(n)
x(n) Signal

generator

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

3.1. P-Z chart and frequency response

Upon running the FilterScript code, we obtain the following P-Z chart and frequency response.

As seen, the A1 and A2 filters have been combined correctly. You may alter the filter parameters interactively by using

the signal analyser's Interface Variable Controller UI,

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

4. Example project

An example project file (\Projects\emg_ex.afd) is provided with the tool. This project file implements the

concepts described herein and uses an example EMG datafile (\Datafiles\EMGSensorData.txt, which may be

loaded into the signal generator under the Data File option) with an additive 50Hz sinusoid. Depending on your

installation directory structure, it may be necessary to find the \Datafiles directory manually and re-load the datafile.

The chart shown below demonstrates the complete signal processing operation. Where, it can be seen that the

filtering operation (shown in red) has nicely eliminated the baseline offset and the effects of the 50Hz interference and

produced an accurate estimate of the RMS amplitude of the EMG signal's envelope.

5. Zero-phase filtering

ASN Filter Designer includes the option for enabling zero-phase filtering

This is very useful for eliminating the effects of an IIR filter’s non-linear phase, as it is set to zero. The zero-phase

filtering operation is anti-causal and therefore cannot be run in real-time, as seen in the following block diagram:

After enabling Block-based mode (see below), and clicking on enable, the tool will automatically perform the zero-phase

filtering operation on all filters in the cascade, i.e. H1, H2, Heq and H3. Although it should be noted that enabling this

option will not modify the original filter transfer function displayed in the main design canvas.

The filtering effects on an input waveform are:

1. Zero phase distortion.

2. The net filter transfer function is equal to the squared magnitude of the original filter transfer function.

3. The net filter order is double the original filter order.

Block-based mode should be selected by unchecking the Streaming

checkbox in the Setup menu.

H(z) Time

reversal
H(z) Time

reversal
𝑋(𝑧). 𝐻(𝑧). 𝐻(𝑧−1) 𝑋(𝑧)

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

6. Deploying to an STM32 Arm Cortex-M microcontroller

ASN’s DSP ANSI C filtering framework extends the functionality of Arm’s CMSIS-DSP library by virtue of supporting the

complete signal cascade. The framework is actually hardware agnostic and can be run on any hardware, but has been

optimised for Arm Cortex-M processors.

Before generating the code, the H2 filter (i.e. the filter designed in FilterScript) needs to be firstly re-optimised
(transformed) to an H1 filter (main filter) structure for deployment. The options menu can be found under the P-Z tab
in the main UI.

NB. After completing this step, the H2 filter will be removed from the cascade. The next step involves setting the desired

Precision arithmetic and filter structure, as described below.

All floating-point filters designs must be based on Single or Double Precision arithmetic and must be either have a

Direct Form I or Direct Form II Transposed filter structure. A Biquad cascade using the Direct Form II Transposed

structure is advocated for floating point implementation by virtue of its higher numerical stability and accuracy.

Quantisation and filter structure settings can be found under the

Q tab (as shown on the left). Setting Arithmetic to Single

Precision and Structure to Direct Form II Transposed and

clicking on the Apply button configures the IIR considered

herein for the ANSI C software framework.

Professional licence users only: Clicking on the arm button will automatically convert the H2 filter into an H1

filter and generate the C code based on the current filter structure and quantisation settings.

https://www.advsolned.com/wp-content/uploads/2018/09/reopt_preemp.png

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

6.1. Generating application code for Arm microcontrollers

After completing the aforementioned steps, you may use the code generator UI to generate the application C code.

Clicking on Yes. Let’s do it! generates a CodeBlocks project, which can be used in any modern IDE, such as Arm MDK

and STM32Cube IDE.

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

6.2. Deploying to an STM32 Discovery kit and benchmarking

The STM32F469 Discovery kit is a very popular development platform for biomedical signal

processing applications. The onboard Arm Cortex-M4 based microcontroller is a very capable

processor, providing enough computational performance while maintaining low power and

cost with floating-point operations.

The following steps should be undertaken for integrating the deployed C code library into an

STM32CUBE-IDE project.

1. Generate the ANSI C filter project using ASN Filter Designer – see section 6.1.

After generating the code, the working directory of the project should look like:

2. Copy the ASN_DSP folder to your project folder.

3. Copy ASNFDConfig.c to the Src folder and ASNFDConfig.h file to the Inc folder.

4. Now open your project with STM32Cube-IDE, and go to Properties C/C++ General Paths & Symbols

5. Click on the “Add” button and enter the path of the ASN_DSP library folder.

Running the algorithm on the STM32 Discovery kit, we obtained a benchmark of 2.25ms for 1024 samples (5 seconds

worth of data) with the onboard Arm Cortex-M4F2 processor running at 180MHz with O2 optimisation.

2 F suffix signifies that the device has an FPU (floating point unit).

Step 1: Click on “paths and Symbols”

Step 2: Click on “Add”

Step 3: Enter the path to

the folder

Step 4: Click on “OK”

https://www.st.com/en/evaluation-tools/32f469idiscovery.html

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

7. Deploying to Matlab and Python

The complete design may also be

exported to Matlab, Python or even

Scilab for further evaluation with the

3rd party frameworks. A version for all

three platforms of the example

considered herein is available for

evaluation:

\Matlab\EMGDataDemo.m

\Scilab\EMGDataDemo.sce

\Python\EMGDataDemo.py

As with the ANSI C code generator, a

code project wizard is available

allowing for the generation of a

complete project, as described in these

articles: Matlab and Python.

Document Revision Status

Rev. Description Date

1 Document reviewed and released. 21/01/2016

2 Document FilterScript code upgraded 23/05/2021

3 Updated hyperlinks and zero-phase filtering section 16/11/2022

4 Added more explanations for FilterScript and C code generation 05/07/2023

Support and product details

 ASN Filter Designer product home page for a complete product overview.

 ASN Filter FilterScript reference guide for detailed examples.

 ASN Technical support: support@advsolned.com

https://www.advsolned.com/how-to-export-designed-iir-fir-filters-to-matlab/
https://www.advsolned.com/how-to-export-designed-iir-fir-filters-to-python/
https://www.advsolned.com/asn_filter_designer_digital_filter_software/
https://www.advsolned.com/asn-filterscript-reference/
mailto:support@advsolned.com

	Synopsis
	Introduction
	1. Symbolic mathematical filter scripting language (ASN FilterScript)
	1.1. ASN FilterScript code
	1.1.1. Interface variables and the H1 filter

	2. Mathematical functions and post filtering
	2.1. Post Filtering

	3. Signal cascade, building blocks and frequency response
	3.1. P-Z chart and frequency response

	4. Example project
	5. Zero-phase filtering
	6. Deploying to an STM32 Arm Cortex-M microcontroller
	6.1. Generating application code for Arm microcontrollers
	6.2. Deploying to an STM32 Discovery kit and benchmarking

	7. Deploying to Matlab and Python
	Document Revision Status

	Support and product details

