Deploying an EMG RMS envelope w [l 2
measurement application to an N\
STM32 Discovery kit using the ADVAREED SOLUTIONS NEDERLAND

ASN Filter Designer T
S ter Designe ;;i‘&(

Author: Dr. Sanjeev Sarpal

Application note (ASN-AN024) July 2023 (Rev 4)

Synopsis

Electromyography (EMG) is an experimental biomedical engineering technique for evaluating and recording the electrical
activity produced by skeletal muscles. The EMG is performed using an instrument called an electromyograph, where the
electromyograph detects the electrical potential generated by muscle cells when these cells are electrically or
neurologically activated. The captured signals can be analysed by signal processing techniques in order to detect
medical abnormalities and to analyse the biomechanics of human movement.

This application note demonstrates the design of a suitable EMG filtering chain using the ASN Filter Designer's
FilterScript language and its interactive customisation for an RMS (root-mean-square) envelope measurement signal
processing application. Details are given on how the developed application may be deployed to an STM32 Discovery kit
for evaluation in a real-time embedded application. Additional details are also given about deployment to Matlab and
Python for further analysis in popular scientific computing environments.

Introduction

The standard building blocks required for an EMG RMS envelope measurement application are shown below:

4, EMG EMG RMS
=/ data — —_—— |
N (\ ata | . M fullwave N 1 envelope
4@ m‘/ /] rectification() NG
baseline 50/60Hz abs() moving RMS amplitude

remover notch average

A description of each building block is given overleaf.

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

A baseline removal filter (DC removal) can be

M realised with a simple first order pole-zero filter.
—Z
et D+ we — Dzt Where, Where, w, tan(%7) is used to set the

highpass filter's bandwidth.

21 fe

controls the centre
fs

A notch filter. Where, w, =

1—2coswyz !+ 272

A2
1= Zrcosw,z 1 1272 frequency, f. (50 pr 60Hz) of the notch, and r
controls the bandwidth of the notch.
Fullwave rectification abs() Abs () function.
A3 14z Y4224 M An Mth order moving average filter.

1. Symbolic mathematical filter scripting language (ASN FilterScript)

As seen, there are three filters and two mathematical operations. Combining the A1 and A2 filters into one IIR filter
(H2), we can implement the above operation in the ASN Filter Designer with the Symbolic Filter Scripting language.

= Fs+ | arm= H@) | ﬁ@imﬂy‘o.

IR FIR P-Z Q MNotes

Project design notes 0

Thi §] S LR A EL R s m s S R F S = A= S

and finally lowpassed wvia an HI moving
average filter in order to estimate
the BMS amplitude.

>

The scripting language (ASN FilterScript) supports over 82 scientific commands and provides designers with a familiar
and powerful programming language, while at the same time allowing them to implement complex symbolic
mathematical expressions for their filtering applications.

ASN FilterScript offers the unique and powerful ability to modify parameters on the fly with the so-called interface
variables, allowing for real-time updates of the resulting frequency response. This has the advantage of allowing the
designer to see how the coefficients of the symbolic transfer function expression affect the frequency response and
the filter's time domain dynamic performance.

Please refer to the ASN Filter Designer FilterScript reference guide for a detailed overview.

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

https://www.advsolned.com/asn-filterscript-reference/

1.1. ASN FilterScript code

FilterScript's dcremover () and notch () functions can be used to implement the A1 and A2 filters respectively.
Notice that the dcremover () function just requires a single cut-off frequency in Hz, and that the notch () function
requires a centre frequency, fc and bandwidth, BW in Hz.

The dcremover () and notch () functions produce two digital filter objects, A1 and A2. As such, these two objects
can be merged into a single filter' object (Hd) via the augment () function. The “symbolic” keyword sets the
display format of the resulting digital filter object.

Al=dcremover (fl, "symbolic"); // Al filter
A2=notch (fc,BW, "symbolic"); // A2 filter

Hd=augment (Al,A2, "symbolic"); // merge filters

The code snippet shown below demonstrates how to design and merge three filters implementing a highpass and a
double notch at 50Hz and 60Hz respectively,

Al=dcremover (fl, "symbolic"); // Al highpass filter
A2=notch (50,BW, "symbolic"™); // A2 50Hz filter
A3=notch (60,BW, "symbolic"™); // A3 60Hz filter

Hd=augment (Al,A2, "symbolic"); // merge Al and A2 filters
Hd=augment (Hd, A3, "symbolic"); // merge A3 with Hd filters

1.1.1. Interface variables and the H1 filter

FilterScript allows developers to modify parameters on the fly with the so-called interface variables, allowing for real-
time updates of the resulting frequency response without modifying and recompiling the script.

An interface variable is defined as a vector expression:

interface name = {minimum, maximum, step size, default value};

where all entries must be real scalar values. Vectors and complex values will not compile.

The c1earHn1 keyword allows you to remove the H1 filter (primary) from the tool’s internal filter cascade and just use
the H2 (secondary) filter. The relationship of the H1 and H2 filters is shown below:

H1 > H2 | Frequency
response

FIR/IIR filter designed via the FilterScript filter
filter designer GUI

As seen, the main FIR/IIR filter designed via the filter designer GUI is assigned to the primary filter, H1. All poles and
zeros defined via the filter script are added to a secondary filter block, H2.

"'augment () calls the conv () function that is the same as performing an algebraic multiplication of the numerator and
denominator filter polynomials.

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

https://www.advsolned.com/dc-component-remover/
https://www.advsolned.com/notch-filter/
https://www.advsolned.com/asn-filterscript-reference/#toggle-id-1

The complete FilterScript code becomes (including interface variables):

ClearHl; // clear primary filter from cascade
interface BW = {1,4,0.5,1}; // notch BW

interface f1 = {0, 10,0.5,0.5}; // hpf cut-off frequency range
Main ()

Al=dcremover (fl, "symbolic"); // Al filter
A2=notch (fc,BW, "symbolic"); // A2 filter

Hd=augment (Al,A2, "symbolic"); // merge filters
Num=getnum (Hd) ;

Den=getden (Hd) ;
Gain=getgain (Hd) ;

interface fc = {0, fs/2,fs/100,fs/4}; // notch cut-off frequency

2. Mathematical functions and post filtering

—, , Ay Mg | | The fullwave rectification and = mathematical operations can be summarised as
' Setup one RMS () operation, i.e. 7) and implemented via the Output Math Function in
Overflow Saturate the signal analyser. This scaling trick is made possible as H3 is a linear filter (see
Accumulator [0 <] oo the section on post filtering), although this operation is equivalent to using
Word Length abs () with an output Gain of 0.707.
[Analytic Signal
Math Functions
Input None v The tool supports the following mathematical functions: abs,

RMS, sqr and sqrt.
Output |RMS v sS4 d

Frame Size (750 ~

Streaming

2.1. Post Filtering

i ' The ASN Filter Designer's signal analyser implements an extra

LM PostFilter H3 options

@ Post Filtering Moving Average ~

post filter, H3. Unlike the H1 and H2 filters, the H3 filter is

always lowpass and is preceded by an optional mathematical

| Frequency=0.00Hz, Att=-0.0007dB

ouputGan 1571 (3] (e Mexhs function operation (see above).
s For the application considered herein, the H3 moving average
E 220 'r,’-_l,- filter can be implemented in the signal analyser's H3 post filter,
B |~
o 40 | AMAAAAN
e FTI“‘\I”]“ “““u
g 60| " I The abs() function is used for fullwave rectification.
o " The Fourier series for |sin(wt)| results in a DC gain
0 100 scaling factor of % which should be corrected by

Frequency (Hz)

Min Att

setting the Output Gain to = (1.571).
2

| engin=71

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

3. Signal cascade, building blocks and frequency response

The tool’s complete signal cascade is shown below.

Signal
generator

x(n)

y(n)

FIR/IIR filter designed FilterScript filter Math function Post filter
via the filter designer

Notice that the Input math () and H1 filter blocks are disabled for the application considered herein. The actual signal
cascade used for the application is therefore:

Signal x(n) y(n)

generator

FilterScript filter RMS() function Post filter
(Moving average)

Implementation Summary

* Sampling Rate (F=) = 200H=
= Filter Arithmetic = Doukle Precision
* Tnput Math Function = None

*+ Hl {(---) = Disakled

= H? (IIR) = Direct Form II Transposed
= Heq [(-—--) = Disakled

= Cutput Math Function = ERMS

= H3 (FIE) = Direct Form Transposed

= H3 (Cutput Gain) = 1

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

3.1. P-Zchart and frequency response

Upon running the FilterScript code, we obtain the following P-Z chart and frequency response.

= Log Magnitude Phase
Frequency Response: Log Magnitude & Phase

100
0_
Is0
- -20
15 Lo
14 —— 404 L-50
x
,/ \\
J / @
0 / N S 6D r-100 o
H 3 2
I 3 ™
@){(15 = L-150 =
£] g -80-] &
—) E [}
/ (=]]
-0.54 LY 8 F-200 <
. y s
\\H » S -1004
14 — L-250
120+
-1.5 T F-300
-1.5 -1 -0.5 0 0.5 1 15 140
= -350
Real (z)
-160 T T T T T T T T T -400

0 0 20 30 40 50 60 70 B0 S0 100

Frequency (Hz)

As seen, the A1 and A2 filters have been combined correctly. You may alter the filter parameters interactively by using

4

the signal analyser's Interface Variable Controller Ul, *=

L) Interface Variable Controller 4
Name Value
BW 1
fc S50
fl 0.5

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

4. Example project

An example project file (\Projects\emg ex.afd) is provided with the tool. This project file implements the
concepts described herein and uses an example EMG datafile (\Datafiles\EMGSensorData.txt, which may be
loaded into the signal generator under the Data File option) with an additive 50Hz sinusoid. Depending on your
installation directory structure, it may be necessary to find the \patafiles directory manually and re-load the datafile.

The chart shown below demonstrates the complete signal processing operation. Where, it can be seen that the
filtering operation (shown in red) has nicely eliminated the baseline offset and the effects of the 50Hz interference and
produced an accurate estimate of the RMS amplitude of the EMG signal's envelope.

1.2+

0.8 ! . I

e AR N

-0.24

Amplitude

-0.4-

0.6

T T T T T T T T 1
0 75 150 225 300 375 450 525 600 675 750

Frame (Samples)

5. Zero-phase filtering

ASN Filter Designer includes the option for enabling zero-phase filtering el

This is very useful for eliminating the effects of an IIR filter's non-linear phase, as it is set to zero. The zero-phase
filtering operation is anti-causal and therefore cannot be run in real-time, as seen in the following block diagram:

X(2) H(z) Time H(z) Time
reversal reversal

After enabling Block-based mode (see below), and clicking on enable, the tool will automatically perform the zero-phase
filtering operation on all filters in the cascade, i.e. H1, H2, Heq and H3. Although it should be noted that enabling this
option will not modify the original filter transfer function displayed in the main design canvas.

X(2).H(z).H(z™1)

The filtering effects on an input waveform are:

1. Zero phase distortion.

2. The net filter transfer function is equal to the squared magnitude of the original filter transfer function.
3. The net filter order is double the original filter order.

o Block-based mode should be selected by unchecking the Streaming Frame Size 750 v
checkbox in the Setup menu. i [Streaming

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

6. Deploying to an STM32 Arm Cortex-M microcontroller

ASN's DSP ANSI C filtering framework extends the functionality of Arm’s CMSIS-DSP library by virtue of supporting the
complete signal cascade. The framework is actually hardware agnostic and can be run on any hardware, but has been
optimised for Arm Cortex-M processors.

Before generating the code, the H2 filter (i.e. the filter designed in FilterScript) needs to be firstly re-optimised
(transformed) to an H1 filter (main filter) structure for deployment. The options menu can be found under the P-Z tab
in the main UL

Options Update
P-Z Editor options
Mew P-Z Filter I

1| Re-optimise Design ~ * ||| Biquad

ASN FilterSeript Sifrgte-Section

NB. After completing this step, the H2 filter will be removed from the cascade. The next step involves setting the desired
Precision arithmetic and filter structure, as described below.

All floating-point filters designs must be based on Single or Double Precision arithmetic and must be either have a
Direct Form | or Direct Form Il Transposed filter structure. A Biquad cascade using the Direct Form Il Transposed
structure is advocated for floating point implementation by virtue of its higher numerical stability and accuracy.

sw | arm- Hiz

R | =Py | - Quantisation and filter structure settings can be found under the
[ENNNNEERN | O) Q tab (as shown on the left). Setting Arithmetic to Single

Precision and Structure to Direct Form Il Transposed and

Arithmetic |SingIePrecisi0n v| .
scating clicking on the Apply button configures the IIR considered
Structure | Direct Form Il Transposed | 12 herein for the ANSI C software framework.
16 =
15 =

o Professional licence users only: Clicking on the arm button will automatically convert the H2 filter into an H1
filter and generate the C code based on the current filter structure and quantisation settings.

f J
R = R "T"‘ Log magnitude & Phase v Fso K2~ Hiz) ‘ Mg | CCE'Y| | 7 I
lIR FIR P-Z Q
Log magnitude Phase . .
Project design notes
EFatal
ASN Filter Designer Professiona cal demo **
ombines the H2

SETEE fan't deploy to the Arm CMSIS-DSP Framewark. -
er to filter an

Would you like to deploy to the ANSI C Framewaork instead? he RMS amplitud

zero diggree H2 filter combi
r together with
Ves Ma
|——5C| Hl The output of H2 is then pass
™WS N B e e e i - - B R I

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

https://www.advsolned.com/wp-content/uploads/2018/09/reopt_preemp.png

6.1. Generating application code for Arm microcontrollers

After completing the aforementioned steps, you may use the code generator Ul to generate the application C code.

e "}" ‘ Log magnitude & Phase @' A ‘ Py ‘ e -

A-H-2-|QQ- 6-

— . S
L Fitter Summary & Automatic Code Generation

AU D 2| ansic .

. Let's do it!

Generate an ANSI C project with this code ?

Filter summary

#include "ASN DSP/ASNFDFilter.h"
#include "ASNFDConfig.h"

ASNFDDefinition t ASNED;

void initcFilter()
{
InitASNFDDefinition (&ASNED) ;

ASNFD.Arithmetic = SinglePrecision;

ASNFD.Architecture = IIR;

ASHNFD.Fs = 2.0000e+002;

ASNFD.5tructure = IIRTransposedDirectFormII;

ASNFD.H1NumBigquads = 0; // H1 filter not used

// H2 filter

float H2Wumerator [] = { 0.984534, -0.984534, 0.934534, -0.984534}: // b[O
setH2Numerator (&ASNFD, (float*) HZNumerator,4):

float H2Denominator [] = {-1.000000, 0.96%067, -0.923002, 0.894451}; // a
setHZDenominator (&ASNFD, (float*) H2Denominator,4):

// Math functions

ASNFD.OutputMathFunction = RMS;

// H3 filter
ASNFD.H3Enabled = true;
ASHNFD.H3Method = MA;
ASNFD.H3FilterLength
ASNFD.H3CutputGain =

1;

=17
1.0

InitialiseCascade (§ASNFD): // instantiate cascade

}

void Filterdata (flcat* Qutput, const float* Input, const uint32 t size)
{
return FilterCascadeData (&ASNFD,Output, Input, size):

Clicking on Yes. Let's do it! generates a CodeBlocks project, which can be used in any modern IDE, such as Arm MDK
and STM32Cube IDE.

— S
LiH] Fitter Summary & Automatic Code Generation X

A|aD 2| ansic .

Filter summary Generate project ~ Project summary |
/ Code generated successfully
You can now use this ANSI C code directly in your project.

Getting started

@ Show me how to use this code in my C project

Generated output files |

ASNFDConfig.c
ASNFDConfig.h

C filter cascade definition
C filter cascade header definition

main.c — C main test loop file

RSN _DsSP — ASN SDE Framework directory
makefile — compiler makefile (not mandatory)
ASNFD. cbp — CodeBlocks project file

e Open project folder and view generated files

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

6.2. Deploying to an STM32 Discovery kit and benchmarking

The STM32F469 Discovery kit is a very popular development platform for biomedical signal
processing applications. The onboard Arm Cortex-M4 based microcontrolleris a very capable
processor, providing enough computational performance while maintaining low power and
cost with floating-point operations.

The following steps should be undertaken for integrating the deployed C code library into an
STM32CUBE-IDE project.

1. Generate the ANSI C filter project using ASN Filter Designer - see section 6.1.

After generating the code, the working directory of the project should look like:

Name Date modified
ASN_DSP 01-Sep-21 6:31 PM
L ASNFD.cbp 01-Sep-21 2:16 PM
B AsnFDConfig.c 01-Sep-21 6:31 PM
B AsnFDconfigh 01-Sep-21 2:17 PM
B mainc 01-5ep-21 6:33 PM
[| makefile 01-Sep-21 2:16 PM

Copy the asn_Dse folder to your project folder.

Copy ASNFDConfig.c to the src folder and ASNFDConfig. h file to the Inc folder.

AR R

Click on the “Add” button and enter the path of the ASN_DSP library folder.

type filter text Paths and Symbols LR g

Resource
Builders
C/C++ Build Configuration: |Debug [Active] * || Manage Configurations..
v C/C++ General
Code Analysis

Documentation (3 Includes # Symbols = Libraries # Library Paths (2 Source Location & References

File Types

Languages Include directories Add
IFO[:'”E“E' GNUC {2 Core/Inc Eait
ndexer Assembly {2 Drivers/STM32F4xx_HAL Driver/Inc :
Language Mappings e) Delete
Paths and Symbols 1 [Change directory path X
Preghrocessor Include Paths, Macros ete. 4 Export
CMSIS SVD Settings - [pEsE

el
Projeq: References “If ‘ tcre/ASN,DSP Move Up
Run/[ebug Settings |

[& 1s a workspace path Variables.. Mave Down

Workspace.

File system.

@® Using relative paths is ambiguous and not recommended. It can cause unexpected effects.

Authorized
Partner

v
b

Now open your project with STM32Cube-IDE, and go to Properties = C/C++ General = Paths & Symbols

Step 2: Click on “Add”

Step 3: Enter the path to
Restore Defaults “anly the f0|der

5 Import Settings... | | B Export Settings...

@ Apply and Close Cancel

Step 1: Click on “paths and Symbols”

Running the algorithm on the STM32 Discovery kit, we obtained a benchmark of 2.25ms for 1
worth of data) with the onboard Arm Cortex-M4F?2 processor running at 180MHz with 02 opti

2 F suffix signifies that the device has an FPU (floating point unit).

Step 4: Click on “OK"

024 samples (5 seconds
misation.

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under internationa
are subject to change without notice. The information presented in this document is given in good faith and although every ef
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

| copyright laws. All specifications
fort has been made to ensure that

https://www.st.com/en/evaluation-tools/32f469idiscovery.html

7. Deploying to Matlab and Python

L Filter Summary & Automatic Code Generation X The Complete deSIQI'l may aISO be

| 4 B 2 | Matiab/Octave - exported to Matlab, Python or even
Generate a Matlab/Octave project with this code 7 SCIIab fOf further evaluation WIth the

3rd party frameworks. A version for all
three platforms of the example

Filter summary

% ** BASN Filter Designer Rutomatic Code Generator **
% ** Deployment to Matlab/Octave Framework % ConSIderEd hereln IS avallable for
ASNFD.Arithmetic = 'Floating Point (Doukle Frecisiom) ' evaluatlon'

ASNFD.Architecture = 'IIR':

ASHFD.Scructure = 'Direct Form II Transposed';

ASNFD.Response = 'Lowpass'; \Matlab\EMGDataDemo.m

ASNFD.Method 'User Defined':

ASNFD.Biquad = 'Yes': \Scilab\EMGDataDemo. sce
LSNED.Stable = '¥es';

igggjiidzrzfifoe+°°2 ’ \Python\EMGDataDemo.py

LSNFD.SC5=[]:
ASNFD.HZNumerator = [0.98453370860,-0.98453370860, 0.98453370860,-0.98453
ASNFD.HZDenominator = [1.00000000000,-0.96%06741719, 0.92300230935,-0.894

ASNFD.H3Enabled = 'Yes'; H
oD et T As with the ANSI C code generator, a
LSNFD.H3FilterLength = 71;: H H H H
ASNFD.H3Numerator = [0.01408450704, 0.01408450704, 0.01408450704, 0.01408 COde proJECt leard IS aValIabIe
0.01408450704, 0.01408450704, 0.01403450704, 0.01408450704, 0.01408450704 . .
0.01408450704, 0.01408450704, 0.01408450704, 0.01408450704, 0.01408450704 aIIOWIng for the generatlon Of a
0.01408450704, 0©0.01408450704, 0.01408450704, 0.01408450704, 0.01408450704 . . .
0.01408450704, 0.01408450704, 0.01403450704, 0.01408450704, 0.01408450704 Complete proleCt: as descrIbEd In these
0.014083450704, 0©0.01408450704, 0.01403450704, 0.01408450704, 0.01408450704 . I . M I b d P h
0.01408450704, 0©0.01408450704, 0.01408450704, 0.01408450704, 0.01408450704 artlc eS ata an Vt On.
0.01408450704, 0.01408450704, 0.01408450704, 0.01408450704, 0.01408450704
0.014083450704, ©0.01408450704, 0.01403450704, 0.01408450704, 0.01408450704
0.01408450704, 0©0.01408450704, 0.01408450704, 0.01408450704, 0.01408450704
0.01408450704, 0.01408450704, 0.01408450704, 0.01408450704, 0.01408450704
0.014083450704, ©0.01408450704, 0.01403450704, 0.01408450704, 0.01408450704
ASNFD.H3Denominator = [1.000000000007;
LSNFD.H3OutputGain = 1;
ASNFD.CutputMathFunction = '"EMS';
W
L4 >
Document Revision Status
Rev. Description Date
1 Document reviewed and released. 21/01/2016
2 Document FilterScript code upgraded 23/05/2021
3 Updated hyperlinks and zero-phase filtering section 16/11/2022
4 Added more explanations for FilterScript and C code generation 05/07/2023

Support and product details

» ASN Filter Designer product home page for a complete product overview.
» ASN Filter FilterScript reference guide for detailed examples.

* ASN Technical support: support@advsolned.com

© 2023 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws. All specifications
are subject to change without notice. The information presented in this document is given in good faith and although every effort has been made to ensure that
it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

https://www.advsolned.com/how-to-export-designed-iir-fir-filters-to-matlab/
https://www.advsolned.com/how-to-export-designed-iir-fir-filters-to-python/
https://www.advsolned.com/asn_filter_designer_digital_filter_software/
https://www.advsolned.com/asn-filterscript-reference/
mailto:support@advsolned.com

	Synopsis
	Introduction
	1. Symbolic mathematical filter scripting language (ASN FilterScript)
	1.1. ASN FilterScript code
	1.1.1. Interface variables and the H1 filter

	2. Mathematical functions and post filtering
	2.1. Post Filtering

	3. Signal cascade, building blocks and frequency response
	3.1. P-Z chart and frequency response

	4. Example project
	5. Zero-phase filtering
	6. Deploying to an STM32 Arm Cortex-M microcontroller
	6.1. Generating application code for Arm microcontrollers
	6.2. Deploying to an STM32 Discovery kit and benchmarking

	7. Deploying to Matlab and Python
	Document Revision Status

	Support and product details

