

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 1

Deploying the ECG Pan-Tompkins filter
cascade on an STM32 Discovery kit
using the ASN Filter Designer

Author: Dr. Sanjeev Sarpal

Application note (ASN-AN029) March 2024 (Rev 3)

Synopsis

As governments slash their budgets for medical care in an attempt to minimise their deficits, the demand for low-cost

high-tech home solutions has never been greater. Although biomedical monitoring devices have been around for

decades, they are very expensive and require trained medical personnel. With the advent of miniature contactless

sensor technology, consumers now have a chance to monitor their vital life signs in a very affordable way. However,

the challenge for the manufacturers is how to successfully clean the biometric sensor data without destroying the

delicate biometric features within the dataset and implement the total solution in an affordable way.

Common challenges

• Powerline and measurement noise that swamps the biometric data.

• Effects of BLW (baseline wander) and EMG caused by torso movement.

• Effects of digital filtering: broadens the QRS complex and may cause new anomalous artefacts to appear.

• Lack of knowledge in sensor signal processing and algorithms (FDA compliance).

• How to accurately track biometric features and classify heart arrhythmias.

Typical applications include: wearables, such as smartwatches; assisted home telemedicine applications and

specialised medical devices.

1. Introduction

Although there are several methods for tracking the QRS complex in biomedical electrocardiographic signals (ECG)

signals (e.g. Wavelets, the Hilbert transform, Savitzky-Golay filtering) the Pan–Tompkins algorithm is considered by

many to be a standard textbook method. The QRS complex represents the ventricular depolarisation and the main spike

visible in an ECG signal (see below). This feature makes it particularly suitable for measuring heart rate and tracking

arrhythmias.

This application note demonstrates the design of just the Pan-Tompkins filter cascade using the ASN Filter Designer's

FilterScript language, its interactive customisation and deployment to an embedded processor, such as an STM32.

Readers looking for a complete description of the algorithm are referred to the excellent references on the subject.

QRS complex

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 2

1.1. The Pan-Tompkins algorithm

Although there are several sections to the complete Pan-Tompkins algorithm, a block diagram of the filter cascade is

shown below:

The essence of the first stage of the filter cascade centres around building a bandpass filter with the A1 and A2 filters.

A filter bandwidth of approximately 10Hz (e.g. 5-15Hz cut-off) is suggested to maximize the QRS contribution and

reduce muscle noise, baseline wander, powerline interference and the P wave/T wave frequency content. The resulting

signal is then passed through a 5-point derivative filter (A3) in order to provide rate information about the QRS

complex. The final steps involve squaring the signal (abs() may also be used), and then integrating the resulting

signal using the A4 filter. This integration process provides an envelope of the ECG complex and is fundamental for

feature extraction.

Although several implementations exist in the biomedical community, the following filter definitions are used for an

ECG signal sampled at 200 Hz.

Building block Equation Description

A1
(1 − 𝑧−6)2

(1 − 𝑧−1)2
 A lowpass filter.

A2
(−1/32 + 𝑧−16− 𝑧−17 − 𝑧−32/32)

(1 − 𝑧−1)
 A highpass filter.

A3 (2 + 𝑧−1 − 𝑧−3 − 2𝑧−4)/4
A 5-point derivative filter (modified from the

original definition for real-time implementation)

Squaring sqr() Sqr() or Abs() function.

A3 1 + 𝑧−1 + 𝑧−2 +... 𝑧−𝑀 An Mth order moving average filter (integration)

Analysing the equations, notice that in many cases the filter coefficients are unity, leading to very computationally

simple implementation. However, it is important to note that these equations are designed for ECG biomedical data

sampled at 200Hz.

A1

lowpass

squaring A2 A4

highpass
moving

average

ECG

 data

Derivative

QRS complex

envelope
A3

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 3

1.1.1. Practical implementation issues

The reader may have noted that Eqns. A1 and A2 have poles on the unit circle. Although when cascaded these poles

should be cancelled by zeros at the same location there will always be a degree of error depending on the quantisation

used. As such, these errors will lead to longer settling times and a DC offset in the overall result, as any integration

errors will accumulate. This problem may be easily overcome by nudging the poles slightly off the unit circle by a

small forgetting factor, 𝛽 such that 𝛼 = 1 − 𝛽

Building block Equation

A1
(1 − 𝑧−6)2

(1 − 𝛼𝑧−1)2

A2
(−1/32 + 𝑧−16− 𝑧−17 − 𝑧−32/32)

(1 − 𝛼𝑧−1)

The exact value of 𝛼 is best found by experimentation, but a good initial starting point is 𝛼 = 0.995. These corrected

equations will now ensure BIBO filter stability and speed up the cascade’s dynamic time domain performance and

eliminate any DC offsets.

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 4

2. Symbolic math scripting language

As seen, there are three filters and one mathematical operation. Implementing the complete filter cascade can be

simply achieved in the ASN Filter Designer with the symbolic filter scripting language.

Alternatively in the P-Z tab,

The scripting language supports over 82 scientific commands and provides designers with a familiar and powerful

programming language, while at the same time allowing them to implement complex symbolic mathematical

expressions for their filtering applications. The scripting language offers the unique and powerful ability to modify

parameters on the fly with the so-called interface variables, allowing for real-time updates of the resulting frequency

response. This has the advantage of allowing the designer to see how the coefficients of the symbolic transfer

function expression affect the frequency response and the filter's time-domain dynamic performance.

Please refer to the ASN Filter Designer FilterScript reference guide for more information.

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 5

2.1. ASN FilterScript

The digitaltf() function builds a digital filter object based on the numerator and denominator specifications.

Repeating this operation for all three filters, we obtain three digital filter objects, i.e. A1, A2 and A3.

As ASN FilterScript only supports a single H2 filter object, these filters need to be split up between the H1 primary

filter and the secondary H2 filter in FilterScript. Therefore, by assigning the A1 filter to the H1 filter and merging the

A2 and A3 filters into a single filter for the H2 filter, we can implement the complete cascade.

The augment() function merges the A2 and A3 filters1 in order to produce a new filter.

The A4 filter is assigned to H3 post filter respectively that performs the integration.

Finally, in order to get the cascade gain right, a post scaling operation is performed to set the gain to 0dB at 10Hz.

You may of course adjust this to suit your specific requirements.

The complete FilterScript code is shown overleaf.

1 augment() calls the conv() function that is the same as performing an algebraic multiplication of the numerator and

denominator filter polynomials.

lpfnum={1,zeros(5),-2,zeros(5),1};
lpfden={1,-2*alpha,sqr(alpha),zeros(10)};

A1=digitaltf(lpfnum,lpfden,1,"void");

/// augment highpass and derivative filters
Hd=augment(A2,A3,"void");

/// Correct cascade gain: set 10Hz to 0dB
Fc=10; //10Hz
G=computegain(Hd,Fc);
G=G*computegain(A1,Fc);
Gain=Gain/(G);

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 6

2.1.1. Complete ASN FilterScript code for the Pan-Tompkins filter cascade

/// Pan-Tompkins algorithm for ECG BPM detection
//
// This script uses both the H1 and H2 filters
// to implement a filter cascade as described by
// Pan-Tompkins: https://en.wikipedia.org/wiki/Pan-Tompkins_algorithm
//
/// IMPORTANT: Fs = 200Hz
//
// Date: 11 March 2024
// Copyright 2024 Advanced Solutions Nederland BV.

/// forgetting factor: alpha=1-beta
interface alpha = {0.992,0.998,0.001,0.995};

Main()

/// Design lowpass
//
// (1-z^-6)^2
// A1(z) = ------------
// (1-alpha*z^-1)^2
//
lpfnum={1,zeros(5),-2,zeros(5),1};
lpfden={1,-2*alpha,sqr(alpha),zeros(10)};
A1=digitaltf(lpfnum,lpfden,1,"void");

/// Design highpass
//
// (-1/32 + z^-16 -z^-17 + z^-32/32)
// A2(z) = ----------------------------------
// (1-alpha*z^-1)
//
hpfnum={-1/32,zeros(15),1,-1,zeros(14),1/32};
hpfden={1,-alpha,zeros(31)};
A2=digitaltf(hpfnum,hpfden,1/32,"void");

/// Design derivative filter
// A3(z) = (2 + z^-1 - z^-3 - 2z^-4)/4
//
deriv={2,1,0,-1,-2};
A3=digitaltf(deriv,1,1/4,"symbolic");

/// augment highpass and derivative filters
Hd=augment(A2,A3,"void");

/// place augmented filter into H2
Num = getnum(Hd);
Den = getden(Hd);
Gain = getgain(Hd);

/// place lowpass filter into H1 filter
H1Num = getnum(A1);
H1Den = getden(A1);
H1Gain = getgain(A1);

/// Correct cascade gain: set 10Hz to 0dB
Fc=10; //10Hz
G=computegain(Hd,Fc);
G=G*computegain(A1,Fc);
Gain=Gain/(G);

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 7

3. Other IP blocks

As discussed in section 1.1, the non-linear function and integration are implemented in the Math Functions block and

H3 filter. Details of these IP blocks are discussed in the following subsections.

3.1. Mathematic functions

The squaring operation can be implemented by selecting the Sqr()

function via the Math Functions  Output in the signal analyser.

Depending on the dataset, you may also use the abs() function.

3.2. Integration via the H3 Filter

The ASN Filter designer's signal analyser implements an extra

post filter, H3. Unlike the H1 and H2 filters, the H3 filter is

always lowpass and is preceded by an optional mathematical

function operation (see above).

For the application considered herein, the H3 the integration

block is implemented as a moving average filter in the signal

analyser's H3 post filter,

The ASN filter designer's signal analyser complete filtering

chain is shown overleaf together with the signal generator and

the input/output math function blocks.

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 8

3.3. Implementation summary and frequency response

An illustration of the signal processing chain within the tool is shown below. As seen, the A1, A2, A3 and A4 filters are

spread out over the H1, H2 and H3 filters respectively.

The Input math () block is disabled for the application considered herein.

An implementation summary can be found in the signal analyser UI, via the information menu:

H1 H2

IIR lowpass (A1)

designed via FilterScript

FilterScript filter

(A2 + A3)
Post filter

(A4)

H3
Output

math()

Math function

(Sqr)

y(n)

x(n)
Signal

generator

Input

 math()

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 9

4. P-Z chart, cascade frequency response and output

Upon running the FilterScript code, we obtain the following P-Z chart and frequency response. As seen, all three filters

have been cascaded/combined correctly.

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 10

4.1. Better 50/60Hz powerline rejection

You may use the P-Z chart editor in order to improve the filter cascade’s 50/60Hz powerline rejection performance.

The video below demonstrates the procedure.

As seen, within a few minutes you can significantly improve the frequency response of the standard filter cascade by

just nudging the position of the zeros using the mouse.

4.2. Output

https://www.youtube.com/embed/7u4COlCk2O0?feature=oembed

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 11

5. Deploying to an embedded platform

ASN Filter Designer’s ANSI C SDK framework provides developers with a comprehensive ANSI C code base that can

be used to deploy developed filtering applications to any C embedded platform. This agnostic feature, allows product

developers to quickly integrate digital filtering functionality into their existing designs with the minimum amount of

effort. This allows developers to directly deploy their filtering application from within the tool to any Arm, Arduino,

ESP32, Beagle Bone platform for direct use in their application.

Please refer to the ANSI C SDK user guide for step-by-step instructions on how to use the generated code in your project.

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 12

5.1. Deploying to an STM32 Discovery kit

The STM32F469 Discovery kit is a very popular development platform for biomedical signal

processing applications. The onboard Arm Cortex-M4 based microcontroller is a very capable

processor, providing enough computational performance while maintaining low power and

cost with floating-point operations.

The following steps should be undertaken for integrating the deployed C code library into an

STM32CUBE-IDE project.

1. Generate the ANSI C filter project using ASN Filter Designer – see section 5.

After generating the code, the working directory of the project should look like below.

2. Copy the ASN_DSP folder to your project folder.

3. Copy ASNFDConfig.c to the Src folder and ASNFDConfig.h file to the Inc folder.

4. Now open your project with STM32Cube-IDE, and go to Properties  C/C++ General  Paths & Symbols

5. Click on the “Add” button and enter the path of the ASN_DSP library folder.

Step 1: Click on “paths and Symbols”

Step 2: Click on “Add”

Step 3: Enter the path to

the folder

Step 4: Click on “OK”

https://www.st.com/en/evaluation-tools/32f469idiscovery.html

© 2024 Advanced Solutions Nederland B.V. All material presented in this document is protected by copyright under international copyright laws.
All specifications are subject to change without notice. The information presented in this document is given in good faith and although every
effort has been made to ensure that it is accurate, Advanced Solutions Nederland accepts no liability for any typographical errors.

Page 13

5.2. Benchmarks

Running the algorithm on the STM32 Discovery kit, we obtained the following benchmarks with the onboard Arm

Cortex-M4F2 processor.

Test Clock count Time (ms) @ 180MHz

1024 samples 1899735 10.55

32 samples 59553 0.33

Analysing the benchmark results, it can be seen that even for 5 seconds worth of data (1024 samples), the filtering

operation is completed in about 11ms when using a 180MHz clock. Also, for 32 samples or 160ms worth of

measurement data (Fs = 200Hz), the filtering operation is completed in 330s, making the implementation suitable for

real-time QRS detection.

6. Product support and further reading

ASN Filter Designer

1. ASN Filter Designer product home page

2. ASN Technical support: support@advsolned.com

3. ANSI C SDK user guide for step-by-step instructions on how to use the generated code in your project.

Biomedical QRS detection and BPM tracking

1. A detailed description of the Pan-Tompkins algorithm on Wiki

2. Pan-Tompkins’s original paper from 1985

3. Good overview of QRS detection methods and challenges

4. Robust BPM measurement using Savitzky-Golay filtering (ASN Filter Designer reference design)

Document Revision Status

Rev. Description Date

1 Document reviewed and released. 26/10/2021

2 Added more detail in the introduction and STM32 details 19/06/2023

3 Added section 1.1.1 and updated code 11/03/2024

2 F suffix signifies that the device has an FPU (floating point unit).

http://www.advsolned.com/asn_filter_designer.html
mailto:support@advsolned.com
https://www.advsolned.com/asn-filter-designer-dsp-ansi-c-sdk-user-guide/
https://en.wikipedia.org/wiki/Pan-Tompkins_algorithm
https://courses.cs.washington.edu/courses/cse474/18wi/labs/l8/QRSdetection.pdf
https://people.ece.cornell.edu/land/courses/ece5030/labs/s2013/QRS_detect_review.pdf
https://www.advsolned.com/noise-reduction-tips-biomedical-ecg-data/

	Synopsis
	1. Introduction
	1.1. The Pan-Tompkins algorithm
	1.1.1. Practical implementation issues

	2. Symbolic math scripting language
	2.1. ASN FilterScript
	2.1.1. Complete ASN FilterScript code for the Pan-Tompkins filter cascade

	3. Other IP blocks
	3.1. Mathematic functions
	3.2. Integration via the H3 Filter
	3.3. Implementation summary and frequency response

	4. P-Z chart, cascade frequency response and output
	4.1. Better 50/60Hz powerline rejection
	4.2. Output

	5. Deploying to an embedded platform
	5.1. Deploying to an STM32 Discovery kit
	5.2. Benchmarks

	6. Product support and further reading
	Document Revision Status

