

ASN Filter Designer

DSP ANSI C v2.x SDK user’s guide

June 2025

ASN25-DOC003, Rev. 1

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 2
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

1. Overview

This document provides an overview of how to use the DSP ANSI C v2.x SDK with ASN Filter Designer v5.4.0 and

higher. A legacy document (ASN21-DOC012) is available for v1.x of the library, pertaining to ASN Filter Designer v5.3.5

and earlier versions.

The DSP ANSI C v2.x SDK provides significant improvements over v1.x, with strict data typing, improved memory

management, and support for single-sample and multi-sample modes — specifically designed to help Arm developers

implement reliable real-time embedded systems very easily.

Modes of operation:

1. multi-sample (MS) mode: highest speed – whereby 4 samples are computed in parallel. This method is

approximately twice as fast as the single sample mode on most Arm processors with an HW FPU.

2. single-sample (SS) mode: good for real-time control applications, whereby single sample operation is required

for minimising latency.

The SDK supports a variety of floating-point data types, including: complex double, complex float, float

and double precision.

Fixed point arithmetic is currently not supported!

The content is as follows:

• Project folder structure generated from the ASN Filter Designer

• Filter cascade and non-linear functions

• Understanding main.c

• How to implement multiple filter cascades

• API description

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 3
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

2. Project folder structure generated from the ASN Filter Designer

The ASN Filter Designer’s automatic code generator produces the following files and folders in the project folder:

ASN_DSP - This folder contains all the framework dependencies required to compile the filter code. The ASN Filter

Designer’s code generation wizard will automatically select the correct datatype, and produce the necessary

framework C files.

ASNFDConfig.c - This file contains API and filter structures of the designed filter(s).

ASNFDConfig.h – Associated header design file.

main.c - Contains example code to demonstrate the use of the SDK.

ASNFD.cbp –Code Blocks project file.

To use the filter code in your project, include the following folders and files in your project folder
ASN_DSP, ASNFDConfig.c, ASNFDConfig.c

Install Code Blocks or the MinGW compiler to quickly try the project.

The framework SDK files are arranged in the ANSI C directory, where SS pertains to single-sample mode and MS

pertains to multi-sample mode respectively.

https://www.codeblocks.org/downloads/
https://www.codeblocks.org/downloads/
https://sourceforge.net/projects/mingw/

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 4
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

3. Filter cascade and non-linear functions

In order to implement a complete application, the ASN Filter Designer uses a combination of filters and non-linear

functions, as described below in the architecture diagram. All blocks can be enabled or disabled from within the ASN

Filter Designer depending on the user's requirements.

Depending on the application, we can enable or disable Input and Output math functions. These functions are helpful

for pre- or post-processing operations on the signal. The ASN Filter Designer supports the following math functions.

You can select one of them according to your application’s needs.

Function () Math operation Description

None - Disable the function block.

Abs |𝑥| = √𝑎2 + 𝑏2 Absolute.

Ln 𝑙𝑜𝑔𝑒 𝑥 Natural logarithm.

Angle 𝑡𝑎𝑛−1 (
𝑏

𝑎
) Compute the arctangent (phase in radians).

RMS
√𝑎2 + 𝑏2

√2
 Root mean square.

Sqr 𝑥2 Square.

Sqrt √𝑥 Square root.

TKEO 𝑦(𝑛) = 𝑥2(𝑛 − 1) − 𝑥(𝑛)(𝑥 − 2) TKEO (Teager-Kaiser energy operator) algorithm.

H1 H2

FIR/IIR filter designed
via the filter designer

FilterScript filter

H3
Output
math()

Signal
generator

Input
 math()

x(n)

Math function Post filter

y(n)

Heq

All-pass filter
cascade

Hblw

BLW Tracker

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 5
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

3.1. Hblw filter

The Hblw filter (BLW tracker) precedes the H1 primary filter and is primarily intended for BLW (baseline wander)

suppression or tracking. The BLW tracker uses a linear phase Kolmogorov-Zurbenko filter cascade to implement either

a tracking (LPF) or removal (HPF) filter cascade. This filter is ideal for designing a variety of low-frequency filters,

such as biomedical BLW removal highpass filters for ECG and predictive maintenance applications, and lowpass DC

tracking filters for DC loadcell applications.

3.2. H1 filter

The H1 filter is the primary filter. It supports the design of standard prototype methods, such as Butterworth,

Chebyshev for IIR filters, and Parks-McClellan, Kaiser for FIR filters using the UI within the tool. The H1 filter may also

be fine-tuned via the pole-zero editor and even programmed with an exotic filter via ASN FilterScript.

3.3. H2 filter

The H2 filter block implements a single-section IIR/FIR floating point filter. This filter is available for performing

experiments with the P-Z editor or the ASN FilterScript scripting language. The FilterScript language is primarily

intended as a sandbox concept, allowing for the design and experimentation of transfer functions with symbolic

mathematical expressions.

The Hblw, H1 and H2 filters may be fully programmed using ASN FilterScript.

3.4. H3 filter

Unlike the Hblw, H1 and H2 filters, the H3 filter is always lowpass and is preceded by an optional mathematical

function operation (i.e., Abs, Angle, Ln, RMS, Sqr or Sqrt, and TKEO).

H3 supports the following four types of filters:

Type Transfer function Gain at DC Order

IIR 𝐻3(𝑧) =
1 + 2𝑧−1 + 𝑧−2

1 + 2𝛼𝑧−1 + 𝛼2𝑧−2

1 + 2𝛼 + 𝛼2

4
 2

Moving Average 𝐻3(𝑧) = 1 + 𝑧−1 + 𝑧−2 … + 𝑧−𝑀
1

(𝑀 + 1)
 1-200

Feed through 𝐻3(𝑧) = 1 1 -

Median data window - 3-195

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 6
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

4. Understanding main.c

ASN Filter Designer’s code generator will automatically generate a C project for CodeBlocks using the requested

quantisation (i.e. float, double or complex). The C code is ANSI C compliant and is not processor-specific, so it can

be used agnostically on a variety of hardware platforms.

Careful design has been undertaken to ensure that the complexities of the filtering operations are hidden from

the developer. Main.c will differ depending on which mode (single or multi) has been selected. You may also define

multiple filter cascade instances, as discussed in section 5.

4.1. multi-sample mode

As seen, the automatically generated code initialises the filter cascade via the ASNFD object and the

initFilterCascade() function. A test sinusoid is then defined (10Hz in this case) and assigned to the

InputValues array. FilterCascadeData() is then called on this test data in order to perform the filtering

operation. In order to achieve high implementation efficiency on Arm Cortex-M processors, 4 samples are computed

in parallel. Therefore, TEST_LENGTH_SAMPLES must be a multiple of 4 samples, where a good default value is 128

or 256.

An optional reset command ResetCascade(&ASNFD) may be called to reset the filter cascade by setting the

contents of the delaylines of all filters to zero.

Calling this function will not affect the filter coefficients.

https://www.codeblocks.org/

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 7
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

4.2. single-sample mode

As seen, the automatically generated code initialises the filter cascade via the ASNFD object and the

initFilterCascade() function. A test sinusoid is then defined (10Hz in this case) and assigned to the Input

variable. FilterCascadeData() is then called on Input on a sample-by-sample basis in order to perform the

filtering operation.

This mode is approximately twice as slow as the multi-sample mode version on most Arm Cortex-M

processors with a HW FPU!

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 8
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

5. Support for multiple filter cascades

If more than one filter cascade is required, you must define an extra object in both main.c and

ASNFilterConfig.c. For example, to implement two filter cascades, we can define the objects as: ASNFD and
ASNFD2

extern ASNFDDefinition_t ASNFD, ASNFD2; (main.c)

 ASNFDDefinition_t ASNFD, ASNFD2; (ASNFilterConfig.c)

You may then define each cascade’s configuration in ASNFilterConfig.c – see below for an example.

Fi
rs

t
ca

sc
ad

e

S
ec

on
d

 c
as

ca
de

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 9
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

For single-sample mode, the code in main.c would be

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 10
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

6. API description

A detailed overview of the ASN-DSP library’s API for both the single-sample and multi-sample mode of operation is

now given.

The content is as follows:

1. Initialise filter structure to default values

2. Release or deallocate the memory blocks

3. Initialise the filters and non-linear functions

4. Filtering using the filter cascade

5. Resetting the filter cascade

6. Setting the configuration of the Hblw filter

7. Setting the filter coefficients of the H1 filter

8. Setting the filter coefficients of the H2 filter

9. Setting the filter coefficients of the Heq filter

10. Setting the configuration of the H3 filter

6.1. Initialise filter structure to default values

Data type API prototype
float void InitASNFDDefinition(ASNFDDefinition_t* filterptr);

double void InitASNFDDefinition(ASNFDDefinition_t* filterptr);

complex float void CMPLX_InitASNFDDefinition(CMPLX_ASNFDDefinition_t* filterptr);

complex double void CMPLX_InitASNFDDefinition(CMPLX_ASNFDDefinition_t* filterptr);

Description

Initialises the filter structure to its default values.

Argument

filterptr: pointer to filter structure.

Example
InitASNFDDefinition(&ASNFD);

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 11
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

6.2. Release or deallocate the memory blocks

Data type API prototype
float void DeinitASNFDDefinition(ASNFDDefinition_t* filterptr);

double void DeinitASNFDDefinition(ASNFDDefinition_t* filterptr);

complex float void CMPLX_DeinitASNFDDefinition(CMPLX_ASNFDDefinition_t* filterptr);

complex double void CMPLX_DeinitASNFDDefinition(CMPLX_ASNFDDefinition_t* filterptr);

Description

Release or deallocates the memory blocks utilised by the filter structure.

Argument

filterptr: Pointer to filter structure.

Example
DeinitASNFDDefinition(&ASNFD);

6.3. Initialise the filters and non-linear functions

Data type API prototype
float void InitialiseCascade(ASNFDDefinition_t* filterptr);

double void InitialiseCascade(ASNFDDefinition_t* filterptr);

complex float void CMPLX_InitialiseCascade(CMPLX_ASNFDDefinition_t* filterptr);

complex double void CMPLX_InitialiseCascade(CMPLX_ASNFDDefinition_t* filterptr);

Description

Initialises the filters and non-linear functions according to the design specifications.

Argument

filterptr: Pointer to filter structure.

Example
InitialiseCascade(&ASNFD);

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 12
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

6.4. Filtering using the filter cascade

The library supports two modes of operation: single-sample and multi-sample mode. As such, the

FilterCascadeData() method handles input data either as an array of values (multi-sample mode) or as scalar

value (single sample mode), as described in the following two sub-sections.

6.4.1. single-sample mode

Data type API prototype
float float FilterCascadeData(ASNFDDefinition_t* filterptr, const float

Input);

double double FilterCascadeData(ASNFDDefinition_t* filterptr, const double

Input);

complex float complex float FilterCascadeData(ASNFDDefinition_t* filterptr, const

complex float Input);

complex double complex double FilterCascadeData(ASNFDDefinition_t* filterptr, const

complex double Input);

Description

Performs the filtering operation using the filter cascade on a sample-by-sample basis, and returns the result.

This method is approximately twice as slow as the multi-sample mode version on most Arm Cortex-M with HW FPU.

As such, it is recommended to use the multi-sample mode version for performance, and this version for real-time

applications where low latency is paramount.

Arguments

filterptr: Pointer to filter structure.

Input: scalar input sample value.

Example
Output=FilterCascadeData(&ASNFD,Input);

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 13
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

6.4.2. multi-sample mode

Data type API prototype
float void FilterCascadeData(ASNFDDefinition_t* filterptr, float* Output,

const float* Input, const uint32_t FrameSize);

double void FilterCascadeData(ASNFDDefinition_t* filterptr, double* Output,

const double* Input, const uint32_t FrameSize);

complex float void CMPLX_FilterCascadeData(ASNFDDefinition_t* filterptr, float*

Output, const float* Input, const uint32_t FrameSize);

complex double void CMPLX_FilterCascadeData(ASNFDDefinition_t* filterptr, double*

Output, const double* Input, const uint32_t FrameSize,);

Description

Performs the filtering operation using the filter cascade.

This method is advocated by virtue of its compatibility with data buffers in embedded applications, whereby a block

of sampled data is written to one buffer by the DMA while the CPU simultaneously processes the previous block from

the other buffer. This technique, known as ping-pong buffering, ensures seamless switching between buffers, enabling

continuous data flow with minimal latency and improved processor efficiency—particularly in real-time signal

processing and sensor data acquisition tasks.

In order to achieve high implementation efficiency on Arm Cortex-M processors, 4 samples are computed in parallel.

Therefore, FrameSize must be a multiple of 4 samples, where a good default value is 128 or 256.

Arguments

filterptr: Pointer to filter structure.

FrameSize: Size of input buffer data.

Output: Pointer to an output buffer.

Input: Pointer to the input buffer.

Example
FilterCascadeData(&ASNFD,1024,Output,Input);

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 14
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

6.5. Reset the filter cascade

Data type API prototype
float void ResetCascade(ASNFDDefinition_t* filterptr);

double void ResetCascade(ASNFDDefinition_t* filterptr);

complex float void CMPLX_ResetCascade(CMPLX_ASNFDDefinition_t* filterptr);

complex double void CMPLX_ResetCascade(CMPLX_ASNFDDefinition_t* filterptr);

Description

Resets the filter cascade by setting the contents of the delaylines of all filters to zero.

The coefficients will remain unaffected. This does not need to be called in normal operation, but is included for the

cases where you want to quickly reset the complete filter cascade.

Argument

filterptr: Pointer to filter structure.

Example
ResetCascade(&ASNFD);

6.6. Set configuration of Hblw filter

Description

Sets the configuration of the BLW Tracker.

Since the BLW Tracker is implemented as a cascade of moving average (MA) filters with unity coefficients, it is not

necessary to explicitly define the filter coefficients. Therefore, only three parameters are required, as described below.

Arguments

BLWTrackerMode: Mode of operation: Removal (highpass), Tracking (lowpass).

BLWTrackerL: Length of MA filter.

BLWTrackerR: number of sections.

Examples
ASNFD.BLWTrackerMode = Removal; // Highpass filtering

ASNFD.BLWTrackerL = 357;

ASNFD.BLWTrackerR = 3;

ASNFD.BLWTrackerMode = Tracking; // Lowpass filtering

ASNFD.BLWTrackerL = 53;

ASNFD.BLWTrackerR = 2;

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 15
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

6.7. Set filter coefficients of H1 filter

Data type API prototype
float void setH1Numerator(ASNFDDefinition_t* filterptr,float* ptr,int

len);

void setH1Denominator(ASNFDDefinition_t* filterptr,float* ptr,int

len);

void setH1SOS(ASNFDDefinition_t* filterptr, float* h1sos);

double void setH1Numerator(ASNFDDefinition_t* filterptr, float* ptr, int

len);

void setH1Denominator(ASNFDDefinition_t* filterptr, float* ptr, int

len);

void setH1SOS(ASNFDDefinition_t* filterptr, float* h1sos);

complex float void CMPLX_setH1Numerator(CMPLX_ASNFDDefinition_t* filterptr,

complex float* ptr,int len);

void CMPLX_setH1Denominator(CMPLX_ASNFDDefinition_t* filterptr,

complex float* ptr,int len);

void CMPLX_setH1SOS(CMPLX_ASNFDDefinition_t* filterptr,complex

float* h1sos);

complex double void CMPLX_setH1Numerator(CMPLX_ASNFDDefinition_t* filterptr,

complex double* ptr, int len);

void CMPLX_setH1Denominator(CMPLX_ASNFDDefinition_t* filterptr,

complex double* ptr, int len);

void CMPLX_setH1SOS(CMPLX_ASNFDDefinition_t* filterptr,complex

double* h1sos);

Description

Sets the filter coefficients of the H1 filter.

Arguments

filterptr: pointer to filter structure.

ptr, h1sos: Pointer to the array.

len: length of the array.

Examples
float H1SOS[] = { 0.15919464484408, 0.15919464484408, 0.00000000000000,

0.68165454497010, 0.00000000000000},{ 0.04362563518631, 0.01333388307825,

0.04362563518631, 1.38973983422963,-0.49030168693325};

setH1SOS(&ASNFD, H1SOS);

float H1Numerator[] = { 0.98453370859690, -0.98453370859690, 0.98453370859690, -

0.98453370859690};

setH1Numerator(&ASNFD,(float*) H1Numerator,4);

float H1Denominator[] = {-1.00000000000000, 0.96906741719379, -0.92300230934793,

0.89445146398370};

setH1Denominator(&ASNFD,(float*) H1Denominator,4);

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 16
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

6.8. Set filter coefficients of H2 filter

Data type API prototype
float void setH2Numerator(ASNFDDefinition_t* filterptr, float* ptr,int len);

void setH2Denominator(ASNFDDefinition_t* filterptr, float* ptr,int

len);

double void setH2Numerator(ASNFDDefinition_t* filterptr, double* ptr,int

len);

void setH2Denominator(ASNFDDefinition_t* filterptr, double* ptr,int

len);

complex float void CMPLX_setH2Numerator(CMPLX_ASNFDDefinition_t* filterptr, complex

float* ptr,int len);

void CMPLX_setH2Denominator(CMPLX_ASNFDDefinition_t* filterptr,

complex float* ptr,int len);

complex double void CMPLX_setH2Numerator(CMPLX_ASNFDDefinition_t* filterptr, complex

double* ptr,int len);

void CMPLX_setH2Denominator(CMPLX_ASNFDDefinition_t* filterptr,

complex double* ptr,int len);

Description

Sets the filter coefficients of the H2 filter.

Arguments

filterptr: Pointer to filter structure.

ptr: Pointer to the array.

len: Length of the array.

Example
float H2Numerator [] = {0.98453370859690, -0.98453370859690, 0.98453370859690, -

0.98453370859690};

setH2Numerator(&ASNFD,(float*) H2Numerator,4);

float H2Denominator [] = {-1.00000000000000, 0.96906741719379, -0.92300230934793,

0.89445146398370};

setH2Denominator(&ASNFD,(float*) H2Denominator,4);

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 17
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

6.9. Set filter coefficients of Heq filter

Data type API prototype

float void setHeqSOS(ASNFDDefinition_t* filterptr, float* heq);

double void setHeqSOS(ASNFDDefinition_t* filterptr, double* heq);

complex float
void CMPLX_setHeqSOS(CMPLX_ASNFDDefinition_t* filterptr, complex

float* heq);

complex double
void CMPLX_setHeqSOS(CMPLX_ASNFDDefinition_t* filterptr, complex

double* heq);

Description

Sets the filter coefficients of the all-pass equalisation filter (if enabled).

Arguments

filterptr: Pointer to filter structure.

heq: Pointer to the array.

len: Length of the array.

Example
float HeqSOS[]= {0.15919464484408, 0.15919464484408, 0.00000000000000,

0.68165454497010, 0.00000000000000},{ 0.04362563518631, 0.01333388307825,

0.04362563518631, 1.38973983422963,-0.49030168693325};

setHeqSOS(&ASNFD, HeqSOS);

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 18
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

6.10. Set configuration of H3 filter

Data type API prototype
float void setH3Numerator(ASNFDDefinition_t* filterptr, float* ptr, int

len);

void setH3Denominator(ASNFDDefinition_t* filterptr, float* ptr, int

len);

double void setH3Numerator(ASNFDDefinition_t* filterptr, double* ptr,int

len);

void setH3Denominator(ASNFDDefinition_t* filterptr, double* ptr, int

len);

complex float void CMPLX_setH3Numerator(ASNFDDefinition_t* filterptr, complex float*

ptr, int len);

void CMPLX_setH3Denominator(ASNFDDefinition_t* filterptr, complex

float* ptr, int len);

complex double void CMPLX_setH3Numerator(CMPLX_ASNFDDefinition_t* filterptr, complex

double* ptr, int len);

void CMPLX_setH3Denominator(CMPLX_ASNFDDefinition_t* filterptr,

complex double* ptr, int len);

Description

Sets the filter coefficients of the H3 filter (if enabled).

Arguments

filterptr: Pointer to filter structure.

ptr: Pointer to the array.

len: Length of the array.

 Example
float H3Numerator[] = { 0.98453370859690, -0.98453370859690, 0.98453370859690, -

0.98453370859690};

setH3Numerator(&ASNFD,(float*) H3Numerator,4);

float H3Denominator[] = {-1.00000000000000, 0.96906741719379, -0.92300230934793,

0.89445146398370};

setH3Denominator(&ASNFD,(float*) H3Denominator,4);

Reference: ASN25-DOC003 Rev 1

Document Status: for public release Page: 19
Copyright © 2025 Advanced Solutions Nederland. All rights reserved.

Document Revision Status

Rev. Description Date

1 Document released 20/06/2025

	1. Overview
	2. Project folder structure generated from the ASN Filter Designer
	3. Filter cascade and non-linear functions
	3.1. Hblw filter
	3.2. H1 filter
	3.3. H2 filter
	3.4. H3 filter

	4. Understanding main.c
	4.1. multi-sample mode
	4.2. single-sample mode

	5. Support for multiple filter cascades
	6. API description
	6.1. Initialise filter structure to default values
	6.2. Release or deallocate the memory blocks
	6.3. Initialise the filters and non-linear functions
	6.4. Filtering using the filter cascade
	6.4.1. single-sample mode
	6.4.2. multi-sample mode

	6.5. Reset the filter cascade
	6.6. Set configuration of Hblw filter
	6.7. Set filter coefficients of H1 filter
	6.8. Set filter coefficients of H2 filter
	6.9. Set filter coefficients of Heq filter
	6.10. Set configuration of H3 filter

	Document Revision Status

