“Improve your existing resources”

In a previous blog, we talked about how IoT can help in taking control. There is another step further: to optimize your processes with AIOT.

Benefits

  • Better use of existing resources
  • Take the right decisions at the right time
  • Optimal circumstances

Better use of existing resources

Control means you have a clear overview how assets are being used. Such as:

  • How long does each step in a process take?
  • What are the whereabouts of my assets (trucks, cranes, forklifts, containers…)?
  • What is the state of maintenance?

The next step is of course, to optimize your business.

First of all, many blogs write about total-new situations. In fact, most AIOT is needed in companies which are already established. With their inventory, processes, customers and all the responsibilities which come with them. Large investments have been made to reach the business today. And so, their processes may not be optimal, at least they work. So how to benefit from AIOT, without throwing away all these investments? And: how to be sure processes are at least working as they do know? Smart sensors help to bring the whole process at today’s level, without throwing away resources which are working fine. Besides, companies can choose to implement AIOT piecemeal.

This is especially the case when it’s about highly essential functions such as infrastructure, sluices and installations. Here, the asset is not just an asset, but a part of a total infrastructure. Downtime of such an asset has large implications for society as a whole.

Many processes are still monitored piecemeal. A further optimization is to connect systems with each other. Get 1 overview in 1 dashboard. Learn how your processes are doing, and where are the optimizations are required.

Take the right decisions at the right time

To measure is to know, to know is to be able to improve.

One most mentioned benefits of AIOT is preventive maintenance. Preventive maintenance means that something is repaired or replace, before it is breaks. Or at least, to maintain while the damage is still small. In normal situations there would be downtime, now repairs can be made scheduled. And if downtime is needed for repairs, then it can be scheduled at times the least inconvenient.

It’s already been said: to be able to schedule repairs. Take the right decisions at the right time. Besides, in the old situation, a foreman has to do his round, where he gives each machine the same attention. With AIOT, the quality of the assets can be guarded with sensors. So, at his round, a foreman can give most attention to the machines which mostly need it.

The same applies to a sector as biomedical: ‘to prevent is better then to cure’. So, help your clients and/or yourself to stay healthy. An example is fall detection. And does the elderly take his medicine?

Help your patients with therapy, to make use of knowledge from all previous patients: is therapy going on track? Also: give the patients who need it the right amount of attention. Instead of seeing all your patients with a standard scheduled time-frame, and as a consequence, give none of them enough time really.  If therapy is lagging, you probably want to give those patient attentions. Is therapy going faster then expected: what are the reasons? How can this knowledge be used to improve therapy in the future? Besides, if people can do therapy and appointments at home, they don’t have to spend their precious time; where the actual time needed for treatment is shorter then the time spent on travelling and waiting.

Optimal circumstances

Sensors can guard that product are made or kept in optimal circumstances. E.g., if cutting parts of a machine are still sharp enough, and in their right precision. Or guard the temperature of cooling or keep an eye on the indoor air quality. This may also make guarantees possible, and thus creating added value to your products or service.

Connecting society with 5G

In 2020, KPN opened a 5G Fieldlab on the Brainport Industries Campus (BIC) in Eindhoven. This fieldlab focusses on smart industry, where different use cases show the possibilities of 5G for manufacturing. With its BIC partners, KPN has set up Smart Industry project with the new generation of mobile network technology. The aim of a Fieldlab is to experiment with the benefits of 5G in a representative environment. How can this new network technology be used in combination with developments such as artificial intelligence for numerous smart applications.  To explore how 5G can optimize business processes and improve customer experience.

3.5 GHz

This includes the 3.5GHz frequency, which is ideal for testing high-bandwidth use cases. At this moment. In 2022, frequencies in the 3.5 GHz band will be distributed during the new 5G auction. From 2022-2023, 3.5 GHz can be used outdoors.

The Netherlands is a leader in Europe when it comes to the quality and speed of mobile networks. A position that contributes to the economic success of the Netherlands. To maintain this position, it is essential that the necessary 3.5GHz frequency can be used in these test environments. The availability of this frequency is crucial for the successful testing of 5G applications and the introduction of 5G in the Netherlands. KPN is actively trying to contribute to a suitable solution for this problem.

Ultrawideband (UWB)

The 5G indoors is combined with Ultrawideband. UWB is very useful to track objects on the factory  floor and in warehouses in real time. Objects, assets and people can be determined with up to thirty centimeters accuracy, and often even more accurately.

Since the end of July 2020, KPN has renewed its mobile network which enables 5G. KPN is rapidly expanding coverage throughout the Netherlands. Business customers and entrepreneurs can already make use of special 5G services. To see tomorrow’s digital highway in action, since 5G is one of the enablers for smart industry

3.5 GHz frequency auction

Starting in 2022, KPN will auction G5 frequencies. Meanwhile, together with customers and technology partners, telecom and ICT service provider KPN has launched 5G field labs to discover the value of 5G applications. Thanks in part to 5G technology, these types of applications will become a reality.

During the new 5G auction, frequencies in the 3.5 GHz band will be distributed. These will enable connections at much higher speeds. At the auction in the first quarter of 2022, at least three parties must obtain licenses for the frequencies. No single party may acquire more than 40 percent of the available frequencies, says the proposal for the course of the auction.

A total of 300 megahertz of bandwidth is to be distributed. This consists of three blocks of 60 megahertz and twelve blocks of 10 megahertz. The auction will be held in three phases. Prior to and during the auction the Ministry of Economic Affairs will not provide information about the total number of participants. At the end, the winning parties will be announced and the State Secretary will make the entire bidding process public.

Tomorrow’s digital highway

Thanks to the capacity and reliability of our network, new applications such as innovations in security, healthcare, mobility, logistics and the manufacturing industry become possible.  Unlike 4G, 5G is expected to become an ecosystem from which many business sectors, industries and areas can benefit. Innovations from which the whole of society benefits. In addition to higher speed, 5G focuses explicitly on flexibility in the network to support very short response times and higher reliability. This will enable a wide range of new applications for customers and industries.

5G is expected to provide a huge boost in business for augmented and virtual reality, robotics, drones, intelligent assets, wearables, AI-based video analytics and Internet of Things (IoT), among others.

In addition to 5G, Internet of Things also requires edge computing. This involves placing a small cloud with computing power, storage and network capacity at the edge of the network, as it were, close to applications, devices and users. Because data no longer has to travel all the way up and down to the cloud or a data center, time-critical applications such as self-driving cars and augmented reality become possible.

5G: enabler for Industry 4.0

5G is also a key enabler for Industry 4.0. This involves using Internet of Things, cloud computing and data integration, among other things, to make the production process fully computer-controlled and remote. The human thought process is thereby partially or completely taken over. Due to its high speed and reliability and short latency, 5G is essential within Industry 4.0 for, for example, controlling production lines, facilitating self-driving vehicles and connecting large numbers of IoT devices.

Field Labs

KPN Eindhoven 5G Fieldlab

The national rollout of 5G has only just started, but KPN has been testing 5G for useful applications in its Field Labs for some time. 

The 5G field lab for the manufacturing industry shows everyone which 5G indoor use cases are possible in a factory environment. Besides speed, 5G also enables larger reliability and very low network latency. A large number of wireless sensors also plays an important role in the further rollout of the IoT. Thus, the 5G Field Labs shows that 5G can be used for very different applications simultaneously.

There are a number of ways humidity causes damage in your building because its level is too high, as:

  • Look for signs of allergies from anyone in the building such as worsening hay fever sneezing or post nasal drip
  • Fog on indoor windows
  • Mold growth; moldy or dusty smell
  • Damp spots, e.g., on ceilings or walls
  • Peeling paint
  • Sweating on the basement floor or walls
  • Condensation on water pipes
  • Any collection of water or mildew
  • Decaying wood
  • Wet spots or water stains on ceilings

For most indications that the humidity is too high, the ‘symptoms’ manifest themselves over a long time, e.g., damp spots and peeling paint. For your assets, the saying goes ‘prevention is better than to cure’. Walls and windows have to be painted again, rotten wood has to be replaced, etc.

And even more important, this means that people inside the building have long suffered from humidity levels that are too high. For many people, it has deteriorated their feeling of well-being and worsened their productivity. It may also have triggered and worsened asthmatic and allergenic symptoms.

How to prevent indoor air gets too moist?

Check your indoor air quality and take care of the humidity. The EPA (Environmental Protection Agency) advises to keep humidity levels between 30–50%. Modern sensors like the AirGuard measure humidity, heat and TVOC and CO2 as well and give you a warning when humidity conditions are not optimal. So, you can open or close a window for instance.