For many, Covid-19 was an eye-opener for the importance of indoor air quality. Children spend a large portion of the day at school. American research shows, that children spend 1000 hours at school every year.It is therefore very important that students and teachers stay in a room with clean air. It is healthier and more pleasant. And poor air quality causes students to get worse grades. Why is good indoor air quality in schools and properly functioning HVAC so important? And how can sensors help monitor indoor air quality?

Lower grades, less fun

With stale air, students may find it hard to pay attention to the teacher. Or concentrate on tests or stay awake at all. Besides, poor indoor air quality may affect the ability to make decisions. So, without even realizing yourself, it can damage your productivity and your school results.

Research at K-12 education by Jacqueline M. Nowicki  (U.S. Government Accountability Office, K-12 Education: School Districts Frequently Identified Multiple Building Systems Needing Updates or Replacement., Jacqueline M. Nowicki, June 4, 2020) shows that: “compelling evidence…of an association of increased student performance with increased ventilation rates,” yet “ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards.” 41% of U.S. school districts  need to update or replace their HVAC (heating, ventilation and air conditioning) systems in at least half of their schools. This means about 36,000 schools in the US.

In a survey of school buildings in the Netherlands, 7340 school buildings responded, but not always completely. Overall, 38% of the responding schools met the requested standards, that is 2789 schools. 807 schools (11%) indicated that they did not meet. The remaining schools could not (yet) say whether their building met the standards.

Further, a bad indoor air quality may lead to headaches and cause or worsen asthma and other respiratory illnesses. And, of course, it’s more pleasant to be in a classroom with clean air. Especially when you spend most of the day there.

How can you improve your indoor climate?

4 steps to improve Indoor Air Quality at schools

  1. Install and improve HVAC
  2. Filter and clean the air
  3. Measure indoor air quality with sensors
  4. Dashboard: monitor your indoor air quality

Install and improve HVAC

Due to poor ventilation, the ‘used’ air will not dilute enough with ‘new’, fresh air from outside. So, especially with many people in a closed room (like a class-room) and the ventilation is poor, the fresh air in this room gets more and more replaced by stale air. That’s why effective ventilation requires that it both brings fresh, oxygenated air from outdoors and removes stale indoor air.

sensors indoor air quality classroom Airguard

How to adjust HVAC within schools:

  • If you haven’t done already: install proper HVAC
  • A California study shows that 85% of the classrooms did not provide adequate ventilation
  • Purify the air in the building by extending the operating times of HVAC systems. Let the HVAC run before the first staff arrives and also after the last persons have gone home
  • Increase the rate of air exchanges to provide fresh air through natural of mechanical ventilation
  • Increase to 100% of fresh air intake or the maximum amount possible

Besides, regarding COVID-19, recent study (Centers for Disease Control and Prevention) shows that Covid-19 was 39% lower in schools by opening windows and doors, using fans, or those measurements in combination with air filtration methods.

Filter and Clean the Air

Air cleaners and HVAC filters filter pollutants or contaminants out of the air that passes thru them. They can help reduce airborne contaminants, including particles containing viruses. When ventilation with outdoor air is not possible or when outdoor air pollution is high, air purifiers (portable air cleaners) may be helpful without worsening comfort (temperature or humidity).

Sensors measure Indoor Air Quality

Children spend many hours indoors at school. Therefore, it is important to have a good indoor air quality. For the feeling of well-being for the children and teacher, but also for the children’s grades. You can measure the CO2 with a CO2 meter, or a sensor which combines the monitoring of CO2 with temperature, humidity and Volatile Organic Compounds, for instance ASN Airguard.

If you have installed HVAC, in some cases this doesn’t work properly. This may be caused by:

•             Problems with installation of HVAC systems

•             Incorrect HVAC systems purchased

•             Incorrect controls and thermostats

•             No follow-up testing after installation

•             Poorly-maintained filters

Besides, when you’re busy, keeping an eye on the air quality may easily be ignored. Sensors warn you that the indoor quality has worsened. And they help you to maintain your indoor air quality such, that the risk of spreading the viruses is as least as possible. These warn you with a signal on the sensor and an alert on your app. So, you can take action, adjust your HVAC or just open a window.

Indoor air qualities sensors monitor your indoor climate. They monitor CO2, TOVC, humidity and temperature.

Dashboard: monitor your indoor air quality

Monitor the indoor air quality of your school with a dashboard. You can monitor humidity, temperature, TVOC and CO2 in real time. And it shows how the school performs over time: are there any locations where the indoor air quality easily drops to an unwanted level? So, you can find out the causes and improve air quality.

It is not only schools themselves that are increasingly recognizing the importance of a good indoor climate for students and teachers.  But more and more governments (and parents) are also aware of the importance of air quality within schools. Through monitoring, schools can show authorities that they are meeting air quality standards. And also show parents that they provide a healthy and pleasant learning environment for their children.

Further, facility managers can use their reports by optimizing and save on energy costs by use of energy based on occupation levels and other factors.

Bien que la conception de filtres RIF à phase linéaire soit une tâche facile, ce n’est certainement pas le cas pour les filtres RII qui ont généralement une réponse en phase hautement non linéaire, en particulier autour des fréquences de coupure du filtre. Cet article traite des caractéristiques nécessaires pour qu’un filtre numérique ait une phase linéaire, et de la façon dont la phase de la bande passante d’un filtre RII peut être modifiée afin d’obtenir une phase linéaire en utilisant des filtres d’égalisation passe-tout.

Pourquoi avons-nous besoin de filtres à phase linéaire ?

Les filtres numériques à phase linéaire ont l’avantage de retarder toutes les composantes de fréquence de la même quantité, c’est-à-dire qu’ils préservent les relations de phase du signal d’entrée. Cette préservation de la phase signifie que le signal filtré conserve la forme du signal d’entrée original. Cette caractéristique est essentielle pour les applications audio, car la forme du signal est primordiale pour maintenir une haute fidélité dans le son filtré. L’analyse biomédicale des formes d’onde ECG est un autre domaine d’application qui requiert cette caractéristique, car tout artefact introduit par le filtre peut être interprété à tort comme une anomalie cardiaque.

Le graphique suivant montre les performances de filtrage d’un filtre passe-bas RII de type I de Chebyshev sur des données ECG – la forme d’onde d’entrée (représentée en bleu) est décalée de 10 échantillons (\(\small \Delta=10\)) pour compenser approximativement le retard de groupe du filtre. Remarquez que le signal filtré (représenté en rouge) a atténué, élargi et ajouté des oscillations autour du pic ECG, ce qui n’est pas souhaitable.

Figure 1 : Résultat du filtrage passe-bas RII avec distorsion de phase

Pour qu’un filtre numérique ait une phase linéaire, sa réponse impulsionnelle doit présenter une symétrie conjuguée-paire ou conjuguée-impaire autour de son point central. Ceci est facilement visible pour un filtre RIF,

\(\displaystyle H(z)=\sum\limits_{k=0}^{L-1} b_k z^{-k}\tag{1} \)

Avec la contrainte suivante sur ses coefficients ,

\(\displaystyle b_k=\pm\, b^{\ast}_{L-1-k}\tag{2} \)

ce qui conduit à ,

\(\displaystyle z^{L-1}H(z) = \pm\, H^\ast (1/z^\ast)\tag{3} \)

En analysant l’équation 3, nous voyons que les racines (zéros) de \(\small H(z)\) doivent aussi être les zéros de \(\small H^\ast (1/z^\ast)\). Cela signifie que les racines de H(z) doivent apparaître par paires réciproques conjuguées, c’est-à-dire que si \(\small z_k\) est un zéro de \(\small H(z)\), alors \(\small H^\ast (1/z^\ast)\) doit aussi être un zéro.

Pourquoi les filtres RII n’ont pas une phase linéaire

Un filtre numérique est dit stable à Entrée Bornée, Sortie Bornée, ou stable EBSB (stable BIBO), si chaque entrée bornée donne lieu à une sortie bornée. Tous les filtres RII ont soit des pôles, soit à la fois des pôles et des zéros, et doivent être stables EBSB, c’est-à-dire que

\(\displaystyle \sum_{k=0}^{\infty}\left|h(k)\right|<\infty \tag{4}\)

Où, \(\small h(k)\) est la réponse impulsionnelle du filtre. En analysant l’équation 4, il devrait être clair que le critère de stabilité EBSB ne sera satisfait que si les pôles du système se trouvent à l’intérieur du cercle unitaire, puisque la ROC (région de convergence) du système doit inclure le cercle unitaire. Par conséquent, il suffit de dire qu’un signal d’entrée borné produira toujours un signal de sortie borné si tous les pôles se trouvent à l’intérieur du cercle unitaire.

Les zéros, par contre, ne sont pas contraints par cette exigence et, par conséquent, peuvent se trouver n’importe où sur le plan z, puisqu’ils n’affectent pas directement la stabilité du système. Par conséquent, une analyse de la stabilité du système peut être entreprise en calculant d’abord les racines de la fonction de transfert (c’est-à-dire les racines des polynômes du numérateur et du dénominateur), puis en traçant les pôles et les zéros correspondants sur le plan z.

En appliquant la logique développée aux pôles d’un filtre RII, nous arrivons maintenant à une conclusion très importante sur la raison pour laquelle les filtres RII ne peuvent pas avoir une phase linéaire.

Un filtre stable EBSB doit avoir ses pôles à l’intérieur du cercle unitaire. Pour obtenir une phase linéaire, un filtre RII devrait avoir des pôles réciproques conjugués à l’extérieur du cercle unitaire, ce qui le rendrait instable EBSB.

Sur la base de cette affirmation, il semblerait qu’il ne soit pas possible de concevoir un RII pour avoir une phase linéaire. Cependant, comme nous le verrons plus loin, des filtres d’égalisation de phase peuvent être utilisés pour linéariser la réponse en phase de la bande passante.

Linéarisation de phase avec des filtres passe-tout

Les filtres passe-tout (equalisers) de linéarisation de phase (égaliseurs) sont une méthode bien établie pour modifier la réponse en phase d’un filtre sans affecter sa réponse en amplitude. Un filtre passe-tout du second ordre (Biquad) est défini comme suit :

\( A(z)=\Large\frac{r^2-2rcos \left( \frac{2\pi f_c}{fs}\right) z^{-1}+z^{-2}}{1-2rcos \left( \frac{2\pi f_c}{fs}\right)z^{-1}+r^2 z^{-2}}\tag{5} \)

Où \(\small f_c\) est la fréquence centrale, \(\small r\) est le rayon des pôles et \(\small f_s\) est la fréquence d’échantillonnage. Remarquez comment les coefficients du numérateur et du dénominateur sont disposés comme une paire d’images miroir l’une de l’autre. La propriété d’image miroir est ce qui donne au filtre passe-tout sa propriété souhaitable, à savoir permettre au concepteur de modifier la réponse en phase tout en gardant la réponse en magnitude constante ou plate sur l’ensemble du spectre de fréquences.

En cascadant une cascade d’égalisation APF (filtre passe-tout) (composée de plusieurs APF) avec un filtre RII, l’idée de base est que nous n’avons besoin de linéariser la réponse en phase que dans la région de la bande passante. Les autres régions, telles que la bande de transition et la bande d’arrêt, peuvent être ignorées, car toute non-linéarité dans ces régions est de peu d’intérêt pour le résultat global du filtrage.

Le défi

La cascade d’APF semble être un compromis idéal pour ce défi, mais en réalité, il faut beaucoup de temps et un réglage très précis des positions des APF pour obtenir un résultat acceptable. Chaque APF a deux variables : \(\small f_c\) et \(\small r\) qui doivent être optimisées, ce qui complique la solution. Celle-ci est encore compliquée par le fait que plus on ajoute d’étages d’APF à la cascade, plus le délai de groupe (latence) du filtre global devient élevé. Ce dernier point peut devenir problématique pour les systèmes de contrôle en boucle fermée en temps réel qui dépendent de la propriété de faible latence d’un RII.

Néanmoins, malgré ces difficultés, l’égaliseur APF est un bon compromis pour linéariser les caractéristiques de phase de la bande passante d’un RII.

L’égaliseur APF

ASN Filter Designer fournit aux concepteurs une interface graphique d’égaliseur tout-phase très simple à utiliser pour linéariser la phase de bande passante des filtres RII. Comme on peut le voir ci-dessous, l’interface est très intuitive, et permet aux concepteurs de placer rapidement et d’affiner les positions des filtres APF avec la souris. L’outil calcule automatiquement \(\small f_c\) et \(\small r\), en fonction de la position du marqueur.

Égaliseur APF ASN Filter Designer

Un clic droit sur le diagramme de réponse en fréquence ou sur un marqueur de conception passe-tout existant affiche un menu d’options, comme illustré à gauche.

Vous pouvez ajouter jusqu’à 10 biquads (version professionnelle uniquement).

Un RII avec une phase de bande passante linéaire

En concevant un égaliseur composé de trois paires d’APF, et en le cascadant avec le filtre de Chebyshev de la figure 1, nous obtenons une forme d’onde de filtre dont le pic est beaucoup plus net, avec moins d’atténuation et d’oscillation que le RII original – voir ci-dessous. Toutefois, cette amélioration se fait au prix de trois filtres Biquad supplémentaires (la cascade APF) et d’un retard de groupe accru, qui passe à 24 échantillons contre 10 à l’origine.

Résultat du filtrage passe-bas RII avec trois filtres d'égalisation de phase APF (distorsion de phase minimale)
Résultat du filtrage passe-bas RII avec trois filtres d’égalisation de phase APF
(distorsion de phase minimale)

La réponse en fréquence du filtre RII original et du filtre RII égalisé est illustrée ci-dessous, où le retard de groupe (en violet) est le retard moyen du filtre et constitue un moyen plus simple d’évaluer la linéarité.

RII sans égalisation en cascade
RII sans égalisation en cascade

RII avec égalisation en cascade
RII avec égalisation en cascade

Remarquez que le temps de propagation de groupe de la bande passante RII égalisée (illustré à droite) est presque plat, ce qui confirme que la phase est effectivement linéaire.

Génération automatique de code vers les cœurs de processeurs Arm via CMSIS-DSP

Le moteur de génération automatique de code de l’ASN Filter Designer facilite l’exportation d’un filtre conçu vers des processeurs basés sur Cortex-M Arm via le cadre logiciel CMSIS-DSP. Les fonctions d’analyse et d’aide intégrées de l’outil aident le concepteur à configurer avec succès la conception pour le déploiement.

Avant de générer le code, les filtres RII et d’égalisation (c’est-à-dire les filtres H1 et Heq) doivent d’abord être réoptimisés (fusionnés) en une structure de filtre H1 (filtre principal) pour le déploiement. Le menu d’options se trouve sous l’onglet P-Z dans l’interface utilisateur principale.

Toutes les conceptions de filtres RII en virgule flottante doivent être basées sur l’arithmétique en simple précision et sur une structure de filtre de Direct Form I ou Direct Form II Transposed, car celle-ci est prise en charge par un multiplicateur matériel dans les cœurs M4F, M7F, M33F et M55F. Bien que vous puissiez choisir la double précision, la prise en charge matérielle n’est disponible que dans certains dispositifs Hélium M7F et M55F. La structure Direct Form II Transposed est préconisée pour l’implémentation en virgule flottante en raison de sa plus grande précision numérique.

Les paramètres de quantification et de structure de filtre se trouvent sous l’onglet Q (comme illustré à gauche). En réglant l’Arithmetic sur Single Precision et la Structure sur strong>Direct Form II Transposed et en cliquant sur le bouton Apply, on configure le RII considéré ici pour le cadre logiciel CMSIS-DSP.

Sélectionnez le cadre Arm CMSIS-DSP dans la boîte de sélection de la fenêtre de résumé du filtre:

ASN Filter Designer Sélectionnez le cadre Arm CMSIS-DSP dans la boîte de sélection de la fenêtre de résumé du filtre

Le code C généré automatiquement basé sur le cadre CMSIS-DSP pour une implémentation directe sur un processeur Cortex-M basé sur Arm est montré ci-dessous :

Le code C généré automatiquement basé sur le cadre CMSIS-DSP pour une implémentation directe sur un processeur Cortex-M basé sur Arm

Le générateur de code automatique de l’ASN Filter Designer génère tout le code d’initialisation, la mise à l’échelle et les structures de données nécessaires pour implémenter le filtre RII linéarisé via la bibliothèque CMSIS-DSP d’Arm.

Assistant de déploiement Arm

Les utilisateurs de la licence professionnelle peuvent accélérer le déploiement en utilisant l’assistant de déploiement Arm. L’IA intégrée déterminera automatiquement les meilleurs paramètres pour votre conception en fonction des paramètres de quantification choisis.

L’IA intégrée analyse automatiquement votre cascade de filtres complète et convertit tous les filtres H2 ou Heq en H1 pour la mise en œuvre.

Qu’avons-nous appris ?

Les racines d’un filtre numérique à phase linéaire doivent se trouver dans des paires réciproques conjuguées. Bien que cela ne pose aucun problème pour un filtre RIF, cela devient infaisable pour un filtre RII, car les pôles devraient se trouver à la fois à l’intérieur et à l’extérieur du cercle unitaire, ce qui rendrait le filtre instable EBSB.

La réponse en phase de la bande passante d’un filtre RII peut être linéarisée en utilisant une cascade d’égalisation APF. Le Filter Designer d’ASN fournit aux concepteurs tout ce dont ils ont besoin via une interface graphique d’égaliseur de phase passe-tout très simple à utiliser, afin de concevoir une cascade APF appropriée en utilisant simplement la souris !

Le filtre RII linéarisé peut être exporté via le générateur de code automatique utilisant les fonctions optimisées de la bibliothèque CMSIS-DSP d’Arm pour être déployé sur n’importe quel microcontrôleur Cortex-M.

 

 

Télécharger la démo

Informations sur les licences