“Improve your existing resources”

In a previous blog, we talked about how IoT can help in taking control. There is another step further: to optimize your processes with AIOT.

Benefits

  • Better use of existing resources
  • Take the right decisions at the right time
  • Optimal circumstances

Better use of existing resources

Control means you have a clear overview how assets are being used. Such as:

  • How long does each step in a process take?
  • What are the whereabouts of my assets (trucks, cranes, forklifts, containers…)?
  • What is the state of maintenance?

The next step is of course, to optimize your business.

First of all, many blogs write about total-new situations. In fact, most AIOT is needed in companies which are already established. With their inventory, processes, customers and all the responsibilities which come with them. Large investments have been made to reach the business today. And so, their processes may not be optimal, at least they work. So how to benefit from AIOT, without throwing away all these investments? And: how to be sure processes are at least working as they do know? Smart sensors help to bring the whole process at today’s level, without throwing away resources which are working fine. Besides, companies can choose to implement AIOT piecemeal.

This is especially the case when it’s about highly essential functions such as infrastructure, sluices and installations. Here, the asset is not just an asset, but a part of a total infrastructure. Downtime of such an asset has large implications for society as a whole.

Many processes are still monitored piecemeal. A further optimization is to connect systems with each other. Get 1 overview in 1 dashboard. Learn how your processes are doing, and where are the optimizations are required.

Take the right decisions at the right time

To measure is to know, to know is to be able to improve.

One most mentioned benefits of AIOT is preventive maintenance. Preventive maintenance means that something is repaired or replace, before it is breaks. Or at least, to maintain while the damage is still small. In normal situations there would be downtime, now repairs can be made scheduled. And if downtime is needed for repairs, then it can be scheduled at times the least inconvenient.

It’s already been said: to be able to schedule repairs. Take the right decisions at the right time. Besides, in the old situation, a foreman has to do his round, where he gives each machine the same attention. With AIOT, the quality of the assets can be guarded with sensors. So, at his round, a foreman can give most attention to the machines which mostly need it.

The same applies to a sector as biomedical: ‘to prevent is better then to cure’. So, help your clients and/or yourself to stay healthy. An example is fall detection. And does the elderly take his medicine?

Help your patients with therapy, to make use of knowledge from all previous patients: is therapy going on track? Also: give the patients who need it the right amount of attention. Instead of seeing all your patients with a standard scheduled time-frame, and as a consequence, give none of them enough time really.  If therapy is lagging, you probably want to give those patient attentions. Is therapy going faster then expected: what are the reasons? How can this knowledge be used to improve therapy in the future? Besides, if people can do therapy and appointments at home, they don’t have to spend their precious time; where the actual time needed for treatment is shorter then the time spent on travelling and waiting.

Optimal circumstances

Sensors can guard that product are made or kept in optimal circumstances. E.g., if cutting parts of a machine are still sharp enough, and in their right precision. Or guard the temperature of cooling or keep an eye on the indoor air quality. This may also make guarantees possible, and thus creating added value to your products or service.

Connecting society with 5G

In 2020, KPN opened a 5G Fieldlab on the Brainport Industries Campus (BIC) in Eindhoven. This fieldlab focusses on smart industry, where different use cases show the possibilities of 5G for manufacturing. With its BIC partners, KPN has set up Smart Industry project with the new generation of mobile network technology. The aim of a Fieldlab is to experiment with the benefits of 5G in a representative environment. How can this new network technology be used in combination with developments such as artificial intelligence for numerous smart applications.  To explore how 5G can optimize business processes and improve customer experience.

3.5 GHz

This includes the 3.5GHz frequency, which is ideal for testing high-bandwidth use cases. At this moment. In 2022, frequencies in the 3.5 GHz band will be distributed during the new 5G auction. From 2022-2023, 3.5 GHz can be used outdoors.

The Netherlands is a leader in Europe when it comes to the quality and speed of mobile networks. A position that contributes to the economic success of the Netherlands. To maintain this position, it is essential that the necessary 3.5GHz frequency can be used in these test environments. The availability of this frequency is crucial for the successful testing of 5G applications and the introduction of 5G in the Netherlands. KPN is actively trying to contribute to a suitable solution for this problem.

Ultrawideband (UWB)

The 5G indoors is combined with Ultrawideband. UWB is very useful to track objects on the factory  floor and in warehouses in real time. Objects, assets and people can be determined with up to thirty centimeters accuracy, and often even more accurately.

Since the end of July 2020, KPN has renewed its mobile network which enables 5G. KPN is rapidly expanding coverage throughout the Netherlands. Business customers and entrepreneurs can already make use of special 5G services. To see tomorrow’s digital highway in action, since 5G is one of the enablers for smart industry

3.5 GHz frequency auction

Starting in 2022, KPN will auction G5 frequencies. Meanwhile, together with customers and technology partners, telecom and ICT service provider KPN has launched 5G field labs to discover the value of 5G applications. Thanks in part to 5G technology, these types of applications will become a reality.

During the new 5G auction, frequencies in the 3.5 GHz band will be distributed. These will enable connections at much higher speeds. At the auction in the first quarter of 2022, at least three parties must obtain licenses for the frequencies. No single party may acquire more than 40 percent of the available frequencies, says the proposal for the course of the auction.

A total of 300 megahertz of bandwidth is to be distributed. This consists of three blocks of 60 megahertz and twelve blocks of 10 megahertz. The auction will be held in three phases. Prior to and during the auction the Ministry of Economic Affairs will not provide information about the total number of participants. At the end, the winning parties will be announced and the State Secretary will make the entire bidding process public.

Tomorrow’s digital highway

Thanks to the capacity and reliability of our network, new applications such as innovations in security, healthcare, mobility, logistics and the manufacturing industry become possible.  Unlike 4G, 5G is expected to become an ecosystem from which many business sectors, industries and areas can benefit. Innovations from which the whole of society benefits. In addition to higher speed, 5G focuses explicitly on flexibility in the network to support very short response times and higher reliability. This will enable a wide range of new applications for customers and industries.

5G is expected to provide a huge boost in business for augmented and virtual reality, robotics, drones, intelligent assets, wearables, AI-based video analytics and Internet of Things (IoT), among others.

In addition to 5G, Internet of Things also requires edge computing. This involves placing a small cloud with computing power, storage and network capacity at the edge of the network, as it were, close to applications, devices and users. Because data no longer has to travel all the way up and down to the cloud or a data center, time-critical applications such as self-driving cars and augmented reality become possible.

5G: enabler for Industry 4.0

5G is also a key enabler for Industry 4.0. This involves using Internet of Things, cloud computing and data integration, among other things, to make the production process fully computer-controlled and remote. The human thought process is thereby partially or completely taken over. Due to its high speed and reliability and short latency, 5G is essential within Industry 4.0 for, for example, controlling production lines, facilitating self-driving vehicles and connecting large numbers of IoT devices.

Field Labs

KPN Eindhoven 5G Fieldlab

The national rollout of 5G has only just started, but KPN has been testing 5G for useful applications in its Field Labs for some time. 

The 5G field lab for the manufacturing industry shows everyone which 5G indoor use cases are possible in a factory environment. Besides speed, 5G also enables larger reliability and very low network latency. A large number of wireless sensors also plays an important role in the further rollout of the IoT. Thus, the 5G Field Labs shows that 5G can be used for very different applications simultaneously.

Humidity is a measure of how much water or moisture there is in the air. Many people with asthma have more complaints when the air is humid. When people speak about humidity, they actually talk about ‘relative humidity’. This is the percentage water in the air, compared to the maximum amount of water the air can hold given the current temperature. When the weather is hot, the air can contain more water than cold air. So, the same relative humidity of say 60% might feel more wet on hot days than on cold days. How does humdity affect asthma?

Importance of humidity

Many people find a humidity of 30-60 percent comfortable. During the hot summer months, many people feel that a humidity level of 55% is comfortable. Above this level, the air is considered humid. Because sweat doesn’t evaporate enough to cool you off, you feel hot and sticky when the air is humid. Above the level 65% is felt as oppressive.

But also: humid air is harder to breath. That can be a problem if you have asthma. Many people with asthma feel that a humidity level above 65% may worsen their symptoms of asthma. When you have asthma, it is more difficult to pull enough air into the lungs, because your airways become narrow. This may cause feeling of shortage of breath or wheezing and coughing.

3 Ways Humidity worsens Asthma

Allergens, chemicals and strong scents are common triggers for people who suffer from asthma. But high humidity can be also just as troublesome.

People with asthma have inflamed airways that are sensitive to things that may not bother other people. That’s why humidity, and all that comes with it, can be a problem for people with asthma. Here are some reasons why.

  • Humid air feels harder to breathe in
  • Humidity may worsen air quality
  • Humidity can mean very high temperatures

Humid air feels harder to breathe in

Hot, humid air may feel heavier and denser and thus harder to breathe in. Besides, humidity may activate sensory nerve fibers in the airways. These C-fibers may narrow the airways and stimulate coughing, which makes it difficult to breathe. Besides, when heat and humidity make the air harder to breathe, the body temperature can go up. This causes sweat, which can lead to dehydration. This can lead to make you breathe faster. These factors may trigger asthma symptoms.

On the other hand, when the air is very dry -a relative humidity is less than 15%- it may also lead to coughing when you’re asthmatic. When the air is very dry, the mucous membranes of the respiratory system may dry out. These membranes line your lungs and respiratory system. This leads to an increased risk for infections from viruses: due to the decreasing natural defense from influenza or the common cold virus. Dry mucous membranes may aggravate allergy symptoms and worsen asthma symptoms (most asthmatics have also allergies).

Humidity may worsen air quality

Humidity can also trigger asthma because moist increase levels of mold, dust mites, ground-level ozone. Those are known as asthma triggers.

When the humidity level is higher than 50 percent, mold might begin to grow. Mold is often found at damp places. If you are sensitive for mold, it may trigger your asthma.

Dust mites are also a problem inside when humidity is high. Dust mites live in furniture, carpets, etc.  If the humidity in your home is higher than 50 percent, dust mites thrive and multiply themselves. Their dead bodies and waste may trigger asthma.

Heat and Humidity may also lead to stagnant air from pollutants (like ozone), allergens (dust, mold, dust mites, pollen) and smoke. This may also trigger asthma symptoms.

Asthma worsens feelings of well-being and productivity

For people suffering from asthma, poor humidity levels don’t affect only the feeling of well-being. It has effects on your productivity. An international study in the Journal of Asthma and Allergy shows: “The average percentage of work hours missed in a single week due to asthma symptoms was 9.3%, ranging from 3.5% (UK) to 17.4% (Brazil). Nearly three-quarters of patients reported an impact on their productivity at work caused by asthma. Overall work productivity loss (both time off and productivity whilst at work) due to asthma was 36%, ranging from 21% (UK) to 59% (Brazil). When asked how asthma made participants feel at work, many respondents highlighted how their respiratory symptoms affect them. Tiredness, weakness and mental strain were also identified as particular challenges, with respondents describing concerns about the perception of colleagues and feelings of inferiority”

Control your humidity level

Humidity levels can worsen asthma in 3 ways. It doesn’t only affect the feeling of well-being, but also productivity. Thus, it is very important for offices, schools, institutions etc. to assure that humidity levels are being kept on levels where children, employees, visitors feel most comfortable. Smart sensor solution like the AirGuard help to monitor the indoor air quality.

AIoT has many benefits. Those benefits can be summarized as: to save, to control, tot optimize and to innovate. How does AIOT gives you control over your processes? Some examples:

  • To measure is to know
  • Preventive Maintenance
  • Prevent Costs and nuisance in the event of a breakdown or bad functioning
  • Take the right decisions at the right time
  • Track & Trace

 To measure is to know

First, ‘to measure is to know’. You can only be in control of your processes, when you know how they are doing. Therefore, you need to measure.

However, AIOT is booming, still, many companies are in the blind how their processes are functioning.  Or insights are only piecemeal, insight in a machine here, a process there. Which means a company isn’t in control of their whole process.

Preventive Maintenance

Know the extent to which your machines are wearing out. Prevent them from breaking down and schedule maintenance at the least bad time. In doing so, your employees can pay attention to the parts that need their attention the most: sensors keep an eye on the ‘normally’ running parts.

Prevent Costs and nuisance in the event of a breakdown or bad functioning

In many cases, a machine is a part of chain of a whole production process. Thus, a breakdown of one machine means downtime for your whole process.

With IoT, you can create new ways and do more with the same budget. Many industries are working in heavy circumstances because of dust, wind, heat, pressure, etcetera. So, it’s important to recognize if the equipment is still working properly.  With IoT, you can predict and prevent equipment failure by monitoring product wear and replacement rates.  As such, you improve the reliability of your assets and reduce downtime. And if you recognize little faults, you can solve them easily before they have become big and expensive problems.

Take the right decisions at the right time

Having control means that you can take the right decision at the right time. E.g.:

  • To replace a motor of a machine
  • Adjust the circumstances, e.g., the indoor quality in your office, the temperature in your cooling
  • For both doctor and patient: Is the healing process going well?  Give the proper attention to patients who needs it. Instead of giving attention to every patient, without enough time. And even better:  You can optimize the healing process
  • Does the patient follow the medical instructions? Examples: is he doing his therapy on time and in the right way. Does he take his medications?  Especially groups of risk can be monitored so that timely action can be taken if necessary

Track & Trace

  • Keep grip on the presence of all your assets at all times
  • Keep grip on the production process, by knowing at any moment where parts are in the phase of a production process
  • Know where employees and visitors are on your premises, e.g., to avoid them entering hazardous areas. Or to warn them in case of calamities. And avoid unwanted visitors enter your premises

Optimal circumstances

  • Create optimal conditions for your employees. For example in the office by regulating a good indoor climate, which fortunately is getting more and more attention. Poor air quality can worsen the well-being of employees and visitors. It can also lead to lower productivity, for example because people feel lazy when the temperature is too high.
  • Some products and services are highly dependent on maintaining optimum conditions, such as cooling, for example, perishable products. When these conditions are no longer met, all products in a batch may have to be destroyed. Through IoT you can monitor whether these optimal conditions still apply. This allows you to intervene immediately when these conditions deteriorate.

See also:

The Benefits of AIOT: “Lower Costs or More Efficiency”

Biomedical devices are at the forefront of AI and IOT (more often called AIOT). What is your most important reason to use sensors for biomedical devices?

Biomedical sensors for ai, iot and aiot to optimize

To control

  • Does the patient follow the medical instructions? Examples: is he doing his therapy on time and in the right way. Does he take his medications?  Especially groups of risk can be monitored so that timely action can be taken if necessary
  • Is treatment going well?  For both doctor and client alike. And even better:  You can optimize the healing process
  • Do medically devices still give the right measurement?
sensors biomedical devices optimize ai iot aiot

To optimize

  • Optimize your treatment: Compare the treatment results from your client with your other clients. And thus, find out point of improvement
  • Give attention for those who need it. Nobody wants to spend time unnecessary in a waiting room
  • Better use of existing resources
  • Connect systems with each other
  • Take the right decisions at the right time
  • Preventive maintenance Security

To innovate

  • Better serve your clients
  • Be at the forefront of medical developments
  • Track & trace
  • Create optimal circumstances with modern technology
sensors for biomedical devices iot ai aiot

To save

  • Give the client the best care
  • Spend your budget where most needed
  • To prevent is better than to cure
  • Prevent greater suffering, avoid extra high costs
  • Nobody is waiting for unnecessary treatment
  • Preventive maintenance on medical devices prevents higher repair costs and downtime

AIoT has many benefits. Those benefits can be summarized as: saving, controlling, optimizing and innovation. How does AIOT reduce costs and provide more efficiency?

How AIoT can help to save:

  • Preventive maintenance
  • Efficient use of time, equipment and money
  • Lesser costs of energy
  • Don´t throw away infrastructure which is working fine

Preventive maintenance

Purchasing new machinery involves high costs. The assets of public infrastructure exist of expensive equipment. So, there are high costs of replacing equipment which is failing. To reduce these costs, Preventive maintenance comes in. With Preventive maintenance, you can repair or replace parts from which you know that they will not be working properly in a short time. Or on the moment they are not working properly anymore.  With this maintenance program, you can act because an (expected) little failure has caused damage.

And, in many cases such as public infrastructure, a not working device isn’t just a not working device!  A failure of a sluice or railroad switch causes disruption for the infrastructure as a whole: Ships and trains can’t deliver their goods anymore on time. Customers are standing literary in the cold due to not working train infrastructure. With preventive maintenance you can spare them (or yourself) high costs and much annoyance.

Efficient use of time, equipment and money

Use your time, equipment or money? As efficient as possible. In a time of growing economies, employees are scarce and hard to find. So you want to make use of your employee’s time as efficient and effective as possible. This means that employees have to to be able give attention to things… really needed. IoT makes this possible. Some examples:

  • For offices: cleaners have to clean only the places of the office which have actually used instead of cleaning the whole building. Non-used offices can even be shut down.
  • Logistics: more efficienct planning of cranes, further transport
  • Already mentioned: the benefit of preventive maintenance

Lesser costs of energy

Another savings IoT makes possible is saving of energy.

And of course, this benefits the user but also the planet as a whole! And that makes your customers and employees even more satisfied. Which makes that they will stay customer or employer longer… Besides, if you rent offices, they will be longer and easier hired.

Don’t throw infrastructure which is working fine

In most buildings and logistics, the infrastructure has been built years ago with huge efforts and costs. The infrastructure is mission critical, so owners often still accept that their infrastructure isn’t the most efficient, as long as it works. Now sensors come in: they bring an extra layer upon the already existing devices, be it such different devices as hvac in office buildings or cranes in ports.

For feeling comfortable indoor, humidity is one of the most important factors, both physical and mentally. Where temperature is immediately perceived (‘cold in here’), humidity is also one of the most important factors for feeling comfortable indoors. Besides, temperature and humidity go hand-in-hand. Besides, humidity plays a factor in the growth of molds and other allergens.

Indoor air humidity

Humidity is the concentration of water vapor present in the air. Humidity depends on the temperature and pressure. Warm air is able to bind more water than cold. The same amount of water vapor results in higher humidity in cool air than warm air. So, humidity is also important how we experience the temperature. Many measurements of humidity consist of relative humidity: how much water there is in the air relative to the maximum of water it can contain given the same temperature. Regulation the indoor humidity and temperature go together.

Effect of humidity on well-being and health

Humans are more sensitive to changes in temperature than in relative humidity. However, humidity is an important factor in thermal comfort: the condition of mind that expresses satisfaction with the thermal environment. Outdoor, humidity has a much stronger influence at higher than at low temperatures.

Human bodies use evaporative cooling to regulate temperate as primary mechanism. The rate of which perspiration evaporates on the skin is under humid conditions lower than in arid ones. Humans feel warmer at a relative high humidity, because humans perceive the rate of heat transfer from the body rather than the temperature itself.

High humidity (‘humid air’) or low humidity (‘dry air’) can have negative effects on well-being and health. You can feel some effects immediately and they disappear when the humidity is adjusted (or when you leave the room), some effects may rise years later.

Effects of dry air

Dry air may cause:

  • Dry eyes
  • Chapped lips
  • Bloody nose
  • Itching of the nose
  • Irritation of the skin
  • Allergy problems and asthma

Tissue lining of the nasal passages may dry and crack due to low humidity. Besides, it may become more susceptible to penetration of the rhinovirus cold viruses. Very low humidity not only may create discomfort, but respiratory problems and aggravate allergies.

When humidity drops below 20%, it may cause eye irritation.

Dry air during winter

You have probably experienced yourself: at winter, indoor air quality is often rather dry. When temperature decreases under 0°C, relative humidity can drop to 20%. However, ‘good’ indoor humidity should be between 20 and 40%. Especially in winter, a humidity above 30% is preferred to reduce the change that the nasal passages dry out.

The cause of dry air is often the room temperature. That’s why room temperature should be kept under 22°C (72°F).

Humid air

Some effects of humid air indoor:

  • Fatigue
  • Frizzy hair
  • Feeling hot or sweaty
  • Sleep interruptions
  • Respiratory problems
  • Allergy problems and asthma

As said above, some people may suffer respiratory problems. Some of these problems may be related to conditions as asthma or may be caused due to anxiety. Many people hyperventilate as response. This causes feelings such as loss of concentration, numbness or faintness.

Humid air during summer

During summer, the ideal indoor humidity is between 30% to 50%, following the high humidity outside. In any case, constant humidity must be kept under 60%, to prevent the growth of microbes.

Humid air during winter

In some cases, the indoor humidity may rise above 45% during winter. Mostly this is caused by human activity with poor ventilation. The most immediate visible effect is condensing on cold surfaces as windows. When there is often the case of humid air, condense may affect the structure of the building and can cause health problems.

Solutions like Airmex can help you to monitor your humidity, for a comfortable, safe and healthy working environment.

Did you ever wonder where you are most exposed to air pollution? Somewhere outside, you say? Wrong, you breath the most polluted air… indoors! Research shows, that people spend 90% of their time indoors. Isolation and modern heating have brought us comfy, warm indoor environments: home, work, recreation, etc., with no cold air coming from under the doors. However, in many buildings there is a downside. With the tightly enclosed indoor environments, pollution caused indoors or coming from outside has no opportunity to mingle with fresh air. For viruses, heat and certain levels of immunity are perfect environments to stay active. Besides, the Covid-19 virus is spreading.

Indoor concentration of pollution often 2 to 5 times higher than outdoor

Research on the United States Environmental Protection Agency (EPA) site shows:

  • “Americans, on average, spend approximately 90 percent of their time indoors,1 where the concentrations of some pollutants are often 2 to 5 times higher than typical outdoor concentrations.2
  • People who are often most susceptible to the adverse effects of pollution (e.g., the very young, older adults, people with cardiovascular or respiratory disease) tend to spend even more time indoors.3
  • Indoor concentrations of some pollutants have increased in recent decades due to such factors as energy-efficient building construction (when it lacks sufficient mechanical ventilation to ensure adequate air exchange) and increased use of synthetic building materials, furnishings, personal care products, pesticides, and household cleaners.”

Why is air quality important?

You probably know the irritation of eyes or a dry troath yourself. Indoor air pollution can have serious health effects, ranging from irritation of your eyes to respiratory diseases:

  • Irritation of the throat, nose and eyes, such as a dry throat
  • Headaches, dizziness, and fatigue
  • Respiratory diseases, heart disease, and cancer

Indoor concentration of pollution often 2 to 5 times higher than outdoor

“The link between some common indoor air pollutants (e.g., radon, particle pollution, carbon monoxide, Legionella bacterium) and health effects is very well established.

  • Radon is a known human carcinogen and is the second leading cause of lung cancer.4, 5
  • Carbon monoxide is toxic, and short-term exposure to elevated carbon monoxide levels in indoor settings can be lethal.6
  • Episodes of Legionnaires’ disease, a form of pneumonia caused by exposure to the Legionella bacterium, have been associated with buildings with poorly maintained air conditioning or heating systems.7, 8
  • Numerous indoor air pollutants—dust mites, mold, pet dander, environmental tobacco smoke, cockroach allergens, particulate matter, and others—are “asthma triggers,” meaning that some asthmatics might experience asthma attacks following exposure.9

While adverse health effects have been attributed to some specific pollutants, the scientific understanding of some indoor air quality issues continues to evolve. …

One example is “sick building syndrome,” which occurs when building occupants experience similar symptoms after entering a particular building, with symptoms diminishing or disappearing after they leave the building. These symptoms are increasingly being attributed to a variety of building indoor air attributes.

Researchers also have been investigating the relationship between indoor air quality and important issues not traditionally thought of as related to health, such as student performance in the classroom and productivity in occupational settings.10

Solutions like the Covid Airmex can help you to monitor your temperature, humidity, tvoc and co2, for a safe and healthy working environment

When we think of air quality, people mostly think of the outside world, smog from cars and industry or the fresh air of woods. However, 90% of our daily life is spent indoors: our home, workplace, public buildings and schools. Indoor quality is one of the most important components of well-being, feeling comfortable in a room.  Besides, bad air quality has implications on your productivity and may even harm your health. The Volatile organic components (VOC) may be the least known.

TVOCS affects the wellbeing, feeling comfortable and health

TVOCs affect your sense off wellbeing and if you feel comfortable inside a building. Some VOC’s are even bad for health. Some VOCs are more harmful than others. If a TVOC is harmful also depend on factors as level of exposure and length of time being exposed. Besides, some people -especially children and elderly people- have a higher sensibility then others. Immediate symptoms that some people have experienced soon after exposure to VOCs are eye and respiratory tract irritation, headaches, dizziness, visual disorders and memory impairment. An example: some people get immediately a headache from being in a room which is just painted. Others may find the smell just uncomfortable.

TVOCs can cause:

  • Headaches
  • Dizziness
  • Nausea
  • Eye, nose, and throat irritation
  • Coordination loss
  • Fatigue
  • Some VOC’s (as toluene) cause irritation at normal levels, eg allergic skin reactions
  • Bad odor and stale air are uncomfortable and affect people’s feeling of cleanliness
  • Some VOC’s as formaldehyde can cause cancer. VOC’s for a long-term exposure in large doses can damage liver, nervous system and kidneys

What is TVOC?

What is TVOC? TVOC means Total Volatile Organic compounds. Volatile organic compounds are organic chemicals that become a gas at room temperature. There are thousands of VOCs and a multiple of VOC’s are at the same time present. Therefore, the Total VOC is used at most times: measuring the concentration of the total of VOC’s This is easier and less expensive then measuring individual VOC’s.

Some examples of VOC’s are:

  • Benzene
  • Ethylene glycol
  • Formaldehyde
  • Methylene chloride
  • Tetrachloroethylene
  • Toluene

Where do you find VOC’s?

VOC’s come from many sources, even yourself can be a polluter!

  • Products
  • Outside world

VOC in Products

Many VOC’s come from:

  • Cleaners and disinfectants
  • Pesticides
  • Air fresheners
  • Paints and solvents
  • Glue
  • New furniture and carpets
  • Construction materials
  • Electronic devices
  • Plywood

So, some VOC’s may come from everyday life, especially found in sprays and aerosols from cleaners and such. Besides, new construction and renovation may cause significant health concerns. Construction materials, but also the new furniture, carpets and plywood may increase the indoor concentration of VOC’s due to off-gassing. Until the off-gassing has declined, those new products may cause serious threats to your well-being. You can be a polluter yourself, however often far less dangerous then products do.

VOC in the outside world

Vehicle exhaust and indusstry pollution may also cause bad indoor air quality when the polluted air can enter the building due to open windows or air condition that doesn’t work properly. Especially when the building stands in congested or industrial areas.

Are all VOC’s harmful?

“EPA’s Total Exposure Assessment Methodology (TEAM) studies found levels of about a dozen common organic pollutants to be 2 to 5 times higher inside homes than outside, regardless of whether the homes were located in rural or highly industrial areas. Additional TEAM studies indicate that while people are using products containing organic chemicals, they can expose themselves and others to very high pollutant levels, and elevated concentrations can persist in the air long after the activity is completed.” (What are volatile organic compounds (VOCs)?, EPA,  https://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-organic-compounds-vocs)

TVOC can be measured in micrograms per cubic meter (µg/m3) of air (or milligrams per cubic meter (mg/m3), parts per million (ppm) or parts per billion (ppb)). The table below shows that less than 0.3 mg/m3 are considered low TVOC concentration levels. And levels between 0.3 mg/m3 to 0.5 mg/m3 are acceptable.

TVOC Level mg/m3Level of Concern
Less than 0.3 mg/m3Low
0.3 to 0.5 mg/m3Acceptable
0.5 to 1 mg/m3Marginal
1 to 3 mg/m3High
TVOC Level mg/m3 and Level of Concern

The ASN Airmex measures the TVOC in your building, for a safe and comfortable indoor air quality