Did you ever wonder where you are most exposed to air pollution? Somewhere outside, you say? Wrong, you breath the most polluted air… indoors! Research shows, that people spend 90% of their time indoors. Isolation and modern heating have brought us comfy, warm indoor environments: home, work, recreation, etc., with no cold air coming from under the doors. However, in many buildings there is a downside. With the tightly enclosed indoor environments, pollution caused indoors or coming from outside has no opportunity to mingle with fresh air. For viruses, heat and certain levels of immunity are perfect environments to stay active. Besides, the Covid-19 virus is spreading.

Indoor concentration of pollution often 2 to 5 times higher than outdoor

Research on the United States Environmental Protection Agency (EPA) site shows:

  • “Americans, on average, spend approximately 90 percent of their time indoors,1 where the concentrations of some pollutants are often 2 to 5 times higher than typical outdoor concentrations.2
  • People who are often most susceptible to the adverse effects of pollution (e.g., the very young, older adults, people with cardiovascular or respiratory disease) tend to spend even more time indoors.3
  • Indoor concentrations of some pollutants have increased in recent decades due to such factors as energy-efficient building construction (when it lacks sufficient mechanical ventilation to ensure adequate air exchange) and increased use of synthetic building materials, furnishings, personal care products, pesticides, and household cleaners.”

Why is air quality important?

You probably know the irritation of eyes or a dry troath yourself. Indoor air pollution can have serious health effects, ranging from irritation of your eyes to respiratory diseases:

  • Irritation of the throat, nose and eyes, such as a dry throat
  • Headaches, dizziness, and fatigue
  • Respiratory diseases, heart disease, and cancer

Indoor concentration of pollution often 2 to 5 times higher than outdoor

“The link between some common indoor air pollutants (e.g., radon, particle pollution, carbon monoxide, Legionella bacterium) and health effects is very well established.

  • Radon is a known human carcinogen and is the second leading cause of lung cancer.4, 5
  • Carbon monoxide is toxic, and short-term exposure to elevated carbon monoxide levels in indoor settings can be lethal.6
  • Episodes of Legionnaires’ disease, a form of pneumonia caused by exposure to the Legionella bacterium, have been associated with buildings with poorly maintained air conditioning or heating systems.7, 8
  • Numerous indoor air pollutants—dust mites, mold, pet dander, environmental tobacco smoke, cockroach allergens, particulate matter, and others—are “asthma triggers,” meaning that some asthmatics might experience asthma attacks following exposure.9

While adverse health effects have been attributed to some specific pollutants, the scientific understanding of some indoor air quality issues continues to evolve. …

One example is “sick building syndrome,” which occurs when building occupants experience similar symptoms after entering a particular building, with symptoms diminishing or disappearing after they leave the building. These symptoms are increasingly being attributed to a variety of building indoor air attributes.

Researchers also have been investigating the relationship between indoor air quality and important issues not traditionally thought of as related to health, such as student performance in the classroom and productivity in occupational settings.10

Solutions like the Covid Airmex can help you to monitor your temperature, humidity, tvoc and co2, for a safe and healthy working environment

When we think of air quality, people mostly think of the outside world, smog from cars and industry or the fresh air of woods. However, 90% of our daily life is spent indoors: our home, workplace, public buildings and schools. Indoor quality is one of the most important components of well-being, feeling comfortable in a room.  Besides, bad air quality has implications on your productivity and may even harm your health. The Volatile organic components (VOC) may be the least known.

TVOCS affects the wellbeing, feeling comfortable and health

TVOCs affect your sense off wellbeing and if you feel comfortable inside a building. Some VOC’s are even bad for health. Some VOCs are more harmful than others. If a TVOC is harmful also depend on factors as level of exposure and length of time being exposed. Besides, some people -especially children and elderly people- have a higher sensibility then others. Immediate symptoms that some people have experienced soon after exposure to VOCs are eye and respiratory tract irritation, headaches, dizziness, visual disorders and memory impairment. An example: some people get immediately a headache from being in a room which is just painted. Others may find the smell just uncomfortable.

TVOCs can cause:

  • Headaches
  • Dizziness
  • Nausea
  • Eye, nose, and throat irritation
  • Coordination loss
  • Fatigue
  • Some VOC’s (as toluene) cause irritation at normal levels, eg allergic skin reactions
  • Bad odor and stale air are uncomfortable and affect people’s feeling of cleanliness
  • Some VOC’s as formaldehyde can cause cancer. VOC’s for a long-term exposure in large doses can damage liver, nervous system and kidneys

What is TVOC?

What is TVOC? TVOC means Total Volatile Organic compounds. Volatile organic compounds are organic chemicals that become a gas at room temperature. There are thousands of VOCs and a multiple of VOC’s are at the same time present. Therefore, the Total VOC is used at most times: measuring the concentration of the total of VOC’s This is easier and less expensive then measuring individual VOC’s.

Some examples of VOC’s are:

  • Benzene
  • Ethylene glycol
  • Formaldehyde
  • Methylene chloride
  • Tetrachloroethylene
  • Toluene

Where do you find VOC’s?

VOC’s come from many sources, even yourself can be a polluter!

  • Products
  • Outside world

VOC in Products

Many VOC’s come from:

  • Cleaners and disinfectants
  • Pesticides
  • Air fresheners
  • Paints and solvents
  • Glue
  • New furniture and carpets
  • Construction materials
  • Electronic devices
  • Plywood

So, some VOC’s may come from everyday life, especially found in sprays and aerosols from cleaners and such. Besides, new construction and renovation may cause significant health concerns. Construction materials, but also the new furniture, carpets and plywood may increase the indoor concentration of VOC’s due to off-gassing. Until the off-gassing has declined, those new products may cause serious threats to your well-being. You can be a polluter yourself, however often far less dangerous then products do.

VOC in the outside world

Vehicle exhaust and indusstry pollution may also cause bad indoor air quality when the polluted air can enter the building due to open windows or air condition that doesn’t work properly. Especially when the building stands in congested or industrial areas.

Are all VOC’s harmful?

“EPA’s Total Exposure Assessment Methodology (TEAM) studies found levels of about a dozen common organic pollutants to be 2 to 5 times higher inside homes than outside, regardless of whether the homes were located in rural or highly industrial areas. Additional TEAM studies indicate that while people are using products containing organic chemicals, they can expose themselves and others to very high pollutant levels, and elevated concentrations can persist in the air long after the activity is completed.” (What are volatile organic compounds (VOCs)?, EPA,  https://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-organic-compounds-vocs)

TVOC can be measured in micrograms per cubic meter (µg/m3) of air (or milligrams per cubic meter (mg/m3), parts per million (ppm) or parts per billion (ppb)). The table below shows that less than 0.3 mg/m3 are considered low TVOC concentration levels. And levels between 0.3 mg/m3 to 0.5 mg/m3 are acceptable.

TVOC Level mg/m3Level of Concern
Less than 0.3 mg/m3Low
0.3 to 0.5 mg/m3Acceptable
0.5 to 1 mg/m3Marginal
1 to 3 mg/m3High
TVOC Level mg/m3 and Level of Concern

The ASN Airmex measures the TVOC in your building, for a safe and comfortable indoor air quality

High levels of CO2 at office or home may evoke nuisance, fatigue, headaches and dizziness. It lessens your productivity and general feeling of well-being.

How DSP for food and beverage can benefit from ASN Filter Designer. Improve your process control eg turbidity measurement

What are Finite Impulse Respsonse (FIR) Filters? And how to design FIR Filters in ASN Filter Designer and which filters does ASN Filter Designer support?

ASN Smart algorithms and technology offer the IoT approach and results you need.

Since 2006, ASN has successfully helped many international organisations. With data analysis, algorithms, security and successful implementations for their embedded IoT applications.

  • 62 Tried & tested IP blocks that are used worldwide
  • Combability with Arm Cortex-M technology, used in over 80% of IoT devices
  • Biomedical ECG, EMG, Lab-on-chip and vital life signs algorithmic solutions
  • High precision gas and flow rate measurement solutions
  • Human/object radar based motion tracking
  • Sensor signal processing

62 application IP Blocks

Our tried and tested application IP blocks are tried and tested worldwide for variety of IIoT/IoT applications, including:

  • Biomedical (EMG, ECG, vital life signs, lab-on-chip)
  • Smart Grids
  • Machine and motor maintenance
  • Oil and gas
  • ADAS (automotive driver assistance)
  • Smart street lighting
  • Noise cancellation
  • Industrial sensors

Compatibility with Arm Cortex-M technology

The ASN Filter Designer has an automatic code generator for Arm Cortex-M cores. This means that we support virtually every Arm based demo-board: ST, Cypress, NXP, Analog Devices, TI, Microchip/Atmel. And over 200+ other manufacturers. Our compatibility with Arm’s industry standard CMSIS-DSP software framework removes the frustration of implementing complicated digital filters in your IoT application. As a result, you get code that is optimal for Cortex-M devices and that works 100% of the time.

From algorithmic concept to NPD

Our NPD (product development process) provides a systematic and efficient way of productising a developed IoT algorithmic concept. This allows you to get your IoT application to market based on first time right principles.

Biomedical ECG, EMG, Lab-on-chip and vital life signs

One of our specialised sectors is the one of biomedical. For this sector, our ASN Filter Designer is very suitable for data filtering of ECG and EMG. After data filtering, you can export your cleaned data to Matlab. Or immediately export it to an Arm microcontroller for deployment. In parallel to the ASN Filter Designer, we have developed algorithms for a Lab-on-chip and Vital Life Signs measurement.

High precision gas and flow rate measurement solutions

One of our other specalisms are high precision gas and flow rate measurement solutions. Our comprehensive collection of application IP blocks has allowed many international companies to obtain outstanding measurement performance for their IoT applications!

And we can do much more for you… just ask us!

While the developments in the use of drones are going very fast, most of its use is still in an experimenting phase. Besides, the technique is working on an individual basis. From start-ups to big companies like Google, Amazon and UPS. Companies are experimenting by delivering pizzas on the beach. In the future, when drones have become widely adapted, a new form of air control must be developed. In crowded areas in particular. When drones might take up from anyplace and land anywhere anytime, air control is far more difficult than control of normal airplanes. And of course, delivery drones are supposed to work without human interference, even beyond sight from the owner of these drones.

Communication

Drones need to communicate with each other, and with other participants of air traffic. Furthermore, questions about prevention from flying over fires and forbidden areas must be solved. For instance airports, strategic points as driveways and military zones. Taking in consideration they might fly of its course due to wind.

Congestion

When pizza delivery will be just as common as delivery by scooter nowadays, a form of air congestion is going to take place as well. Companies are already proposing to use different ‘airlines’ for speedy delivery and slower registering traffic. But then, there must come a solution how to handle the event when delivery drones are in each other environment without colliding. Or to prevent that the whole traffic gets stuck because every device is waiting on other drones.

The ‘congestion’ takes also place in the use of frequencies. Drones use the same frequencies as a lot of other uses. For instance, airlines and military.

Standardization and legislation

That means standardization and legislation is needed. Standardization, to make certain that drones from different users/companies can communicate with each other. And to make decisions to fly safely and as efficiently as possible. Like other kinds of traffic, legislation is needed to set some rules how all devices can participate in drone traffic and traffic in general. And, when industry won’t be able to solve the already issues mentioned on trust and acceptability, legislation might also come in to set restrictions in the use of drones.

Final Thoughts

The application possibilities of drones are very promising for delivery and registration uses. It is still in its experimental phase. But with developments going fast, soon it will reach the maturity phase. For this, there are two-fold kind of challenges.

One of these are challenges on privacy, safety and security. These challenges have to be solved before their use will get widespread trust and acceptance. Besides, there are technical and communication issues: where multiple drones are being used – especially in cities- challenges how drones can and have to behave in traffic has to be solved.

In both challenges, sensors play a pivotal role in solving the technical questions. Find out more about Drones and DC motor Control

For public infrastructure, removing graffiti costs millions of euro each year. Besides the direct costs, there are the costs of not using the equipment and environmental costs. And naturally, the trains, buses, metro, etc. are your visit card to customers.

The thrill of success

Sometimes, graffiti can look beautiful. But mostly, it looks -and is- vandalism.

Non-removal is an invitation to even more graffiti. Tests in New York have turned out that the immediate removal of graffiti, at least the same day, discourages further graffiti. Besides, the subway of New York is guarded closely, so it has become difficult for vandals to create their painting.

To create something beautiful is mostly not the aim of the sprayers. Most painters do it for the ‘thrill’. The first thrill is to finish their work before they are noticed. The other is to see their work travelling the next day, knowing it will travel the whole country. There are solo-sprayers. But mostly, sprayers work in groups. Actions are being planned, to out-smarten the (railway) police.

Nowadays, public transport companies have guidelines when graffiti is noticed: an employer (e.g. the train manager notices the painting, signs a cleaning company and this company cleans the graffiti the same day with a mobile team.

But as the saying goes: prevention is better than curing! How can you diminish the change of graffiti paintings? Track & Trace solutions help.

Know if someone enters your shunting yard unwanted

The shunting yard is a known spot for graffiti painters. At night, or just on the day itself because it’s easy to enter the premises.

Most marshal yards are guarded by security. However, because they are quiet places, it is rather easy to enter the site and hide from security. Besides, most graffiti painters operate in groups. So, they are practiced to paint a wagon in no-time.

The Dutch regional TV broadcast OogTV: “Meanwhile I know, also from stories that I hear from colleagues from the country, that such artists are unstoppable. We can make the gates so high, and the locks so wide, but if these people want to, they will succeed.”

How Tracy can help: perimeter and object guard

Track and trace can help preventing graffiti in 2 ways:

  • Perimeter detection
  • Object guard

Know if someone enters the marshal yard or any other perimeter. Act immediately on ‘strange’ behavior, such as: unidentified persons on the premises. Or persons at times when you expect nobody will be there. Another option is to guard the object itself, such as a train wagon itself with a sensor. An alert is being send when persons approach the object.

So, you can prevent graffiti to take place or at least, to prevent the painter from finishing his ‘artwork’.

Find out how we can help you: https://www.advsolned.com/tracy-home/

DSP for engineers: the ASN Filter Designer is the ideal tool to analyze and filter the sensor data quickly. Create an algorithm within hours instead of days. When you are working with sensor data, you probably recognize these challenges:

  • My sensor data signals are too weak to even make an analysis. So, strengthening of the signals is needed
  • Where I would expect a flat line, the data looks like a mess because of interference and other containments. I need to clean the data first before analysis
Sensor data: wanted components, desired signals (DC components), and unwanted components (50HZ sine powerline interference, white noise). Filter sensor data DSP

Until now, you’ve probably spent days or even weeks working on your signal analysis and filtering? The development trajectory is generally slow and very painful.

In fact, just think about the number of hours that you could have saved if you had design tool that managed all of the algorithmic details for you. ASN Filter Designer is an industry standard solution used by thousands of professional developers worldwide working on IoT projects.

Our close collaboration with Arm and ST ensures that all designed filters are 100% compatible with all Arm Cortex-M processors, such as ST’s popular STM32 family.

Challenges for engineers

  • 90% of IoT smart sensors are based on Arm Cortex-M processor technology
  • Sensor signal processing is difficult
  • Sensors have trouble with all kinds of interference and undesirable components
  • How do I design a filter that meets my requirements?
  • How can I verify my designed filter on test data?
  • Clean sensor data is required for better product performance
  • Time consuming process to implement a filter on an embedded processor
  • Time is money!

Designers hit a ‘brick wall’ with traditional tooling. Standard tooling requires an iterative, trial and error approach or expert knowledge. Using this approach, a considerable amount of valuable engineering time is wasted. ASN Filter Designer helps you with an interactive method of design, whereby the tool automatically enters the technical specifications based on the graphical user requirements.

Fast DSP algorithm development

  • Fully validated filter design: suitable for deployment in DSP, micro-controller, FPGA, ASIC or PC application.
  • Automatic detailed design documentation: expediting peer review and lowing project risks by helping the designer create a paper trail.
  • Simple handover: project file, documentation and test results provide a painless route for handover to colleagues or other teams.
  • Easily accommodate other scenarios in the future: Design may be simply modified in the future to accommodate other requirements and scenarios, such as 60Hz powerline interference cancellation, instead of the European 50Hz.

ASN Filter Designer: the fast and intuitive filter designer

The ASN Filter Designer is the ideal tool to analyze and filter the sensor data quickly. When needed, you can easily deploy your data for further analyze for tools such as Matlab and Python. As such it’s ideal for engineers who need and powerful signal analyser and need to create a data filter for their IoT application. Certainly, when you have to create data filtering once in a while. Compared to other tools, you can create an algorithm within hours instead of days.

Easily deploy your algorithms to Matlab, Python, C++ and Arm

A big timesaver of the ASN Filter Designer is that you can easily deploy your algorithms to Matlab, Python, C++ or directly on an Arm microcontroller with the automatic code generators.

Instant pain relief

Just think about the number of hours that you could have saved if you had design tool that managed all of the algorithmic details for you.

ASN Filter Designer is an industry standard solution used by thousands of professional developers worldwide working on IoT projects. Our close collaboration with Arm and ST ensures that the all filters are 100% compatible with all Arm Cortex-M processors.

How much pain relief can 125 Euro buy you?

Because a lot of engineers need our ASN Filter Designer for a short time, a 125 Euro license for just 3 months is possible!

Just ask yourself: is 125 Euro a fair price to pay for instant pain relief and results? We think so. Besides, we have a license for 1 year and even a perpetual license. Download the demo to see for yourself or contact us for more information.

 

 

Download demo now

Licencing information