2+

How biomedics can benefit from IoT:

  • Improve the quality and effectiveness of your medical treatment with IoT and thus the quality of life for your patient
  • Do you want to spend your time on patients who really need it? Treat more patients in a better way in the same time within the same budget
  • Improve and fasten your patient’s recovery… with knowledge of results of the treatment of thousands of patients
  • Be on the forefront of IoT and help your patients in ways that were not possible before
  • Better measurement with clean data
  • Security: get control of your patients’ privacy

Sensor devices improve the quality of treatment and thus of life itself. Through prevention, medical treatment itself or therapy. Sensors solutions help to improve life and can even help to save lives. No wonder medical devices are one of the fastest growing sectors in IoT.

Households want to benefit from the newest possibilities IoT devices deliver. For better health and independence as much and as long as possible. Sensor devices can especially help people with chronic diseases, elderly people and people who need constant supervision.

For medical service providers, sensor devices can help to provide the best service as possible in times of increasing medical demand but also on a growing focus on costs. So, budgets must be spent in the best way as possible. Sensors and other IoT devices can help medical facilities to treat more patients in a better way and more efficiently.

How Advanced Solutions helps

Our services can help you in the following ways:

  • IoT solutions
  • Sensor measurement
  • Security

IoT solutions

Our systems prevent accidents from happening and reduce the response time of healthcare professionals.

Sensor measurement

In biomedical applications, sensors are already used in a lot of ways. EMG and ECG are just some examples. For making the right decisions on treatment, the measurement has to be accurate. However, most sensor data suffer from the following problems:

  • Powerline interference, measurement noise and glitches
  • Baseline wander and offsets from analog instrumentation electronics
  • Biomedical sensors are sending weak signals. So, in some cases, those signals have to be strengthened before analysis is possible.

Sometimes the filtering is done in the hardware of the medical equipment. However, these are very costly solutions. And most of the times, a simpler solution and thus less costly solution is what is being sort after.

ASN Consultancy is the modern way of working of algorithm design to separate the wanted sensor signals from the undesirable unwanted signals. So, you can analyse and take action on clean and accurate sensor data.

2+
1+

Why?

  • Many accidents occur in the workplace in a storage room / warehouse
  • There are 110,000 serious injuries (NIOSHA) every year
  • Direct costs of $ 135 million are the result of forklift accidents alone
  • Nearly 80% of forklift accidents involved pedestrians
  • Every 3 days, someone in the US is killed in a forklift accident

Three most common types of injuries:

  • A forklift tilts
  • Employees are hit, crushed or detained by a forklift truck
  • Employees fall from a forklift truck.

Our Solution

  • 360 degree vehicle anti-collision system
  • Reduce the risk of personnel accidents and freight damage
  • Radar modules can detect personnel / objects in real time and warn the driver
  • Built on “Blind spot detection” technology (developed by ASN)
  • ASN smart endpoints (on vehicle) do all real-time data processing
1+
2+

Competition on costs is ever increasing. Meanwhile, customers are more demanding in their expectations. In 2024, global smart sensor market will have a value of $80 billion. In others words: become part of the future or become obsolete!

Challenges Asset Managers

Asset managers are faced with the following challenges:

  • Asset managers demand huge cost savings
  • Tightening of budgets for maintenance programmes
  • Less service disruptions and customer complaints
  • Increasing demands from users
  • No Control and optimal use of my assets
  • Risk of hacking by terrorists
  • Remote firmware updates

With IoT, you can give your equipment a longer lifetime and thus save on repair and replacement costs.

Your customers will become more satisfied with your services. With solutions which weren’t possible until now, products can ‘think’ for their users. Like: the health of the lamp and power quality of street lights, refrigerators which will signal to a car that owner is out of milk, a space on a parking lot is reserved for the visitor when he’s close to the office etcetera.

And the other way around: remember the first time you went in a hotel which had Wi-Fi and you thought: “great”! You’ve probably forgotten; nowadays, not having Wi-Fi has since long became a standard. In IOT, users raise the expectations and will be dissatisfied with devices which do not help them.

A dashboard helps you to view in one glance which assets are working properly and which are probably in need of repair or replacement. Further, you learn when, where and how intensely your assets are being used, so you use your assets more efficiently.

In a world of connected devices, security is very important. Hackers will try to break in: to steal, to cause harm or to shut down your devices. Without security, hackers can make their entry from anywhere: from one of your devices, but also an unsecured device from one of your employee’s at home. So, in the world of IOT, security of these devices is key.

Read about solutions: https://www.advsolned.com/asn-condition-monitoring/

2+
3+

How do you get the best performance from your IoT smart sensor?

The global smart sensor market size is projected to grow from USD 36.6 billion in 2020 to USD 87.6 billion by 2025, at a CAGR of 19.0%. At least 80% of these IoT/IIoT smart sensors (temperature, pressure, gas, image, motion, loadcells) will use Arm’s Cortex-M technology.

IoT sensor measurement challenge

The challenge for most, is that many sensors used in these applications require filtering in order to clean the measurement data in order to make it useful for analysis.

Let’s have a look at what sensor data really is…. All sensors produce measurement data. These measurement data contain two types of components:

  • Wanted components, i.e. information what we want to know
  • Unwanted components, measurement noise, 50/60Hz powerline interference, glitches etc – what we don’t want to know

Unwanted components degrade system performance and need to be removed.

So, how do we do it?

DSP means Digital Signal Processing and is a mathematical recipe (algorithm) that can be applied to IoT sensor measurement data in order to clean it and make it useful for analysis.

But that’s not all! DSP algorithms can also help:

  • In analysing data, producing more accurate results for decision making with ML (machine learning)
  • They can also improve overall system performance with existing hardware. So ther’s no need to redesign your hardware: a massive cost saving!
  • To reduce the data sent off to the cloud by pre-analysing data. So send only the data which is necessary

Nevertheless, DSP has been considered by most to be a black art, limited only to those with a strong academic mathematical background. However, for many IoT/IIoT applications, DSP has been become a must in order to remain competitive and obtain high performance with relatively low cost hardware.

Do you have an example?

Consider the following application for gas sensor measurement (see the figure below). The requirement is to determine the amplitude of the sinusoid in order to get an estimate of gas concentration (bigger amplitude, more gas concentration etc). Analysing the figure, it is seen that the sinusoid is corrupted with measurement noise (shown in blue), and any estimate based on the blue signal will have a high degree of uncertainty about it – which is not very useful if getting an accurate reading of gas concentration!

Algorithms clean the sensor data

After ‘cleaning’ the sinusoid (red line) with a DSP filtering algorithm, we obtain a much more accurate and usable signal. Now we are able to estimate the amplitude/gas concentration. Notice how easy it is to determine the amplitude of red line.

This is only a snippet of what is possible with DSP algorithms for IoT/IIoT applications, but it should give you a good idea as to the possibilities of DSP.

How do I use this in my IoT application?

As mentioned at the beginning of this article, 80% of IoT smart sensor devices are deployed on Arm’s Cortex-M technology. The Arm Cortex-M4 is a very popular choice with hundreds of silicon vendors, as it offers DSP functionality traditionally found in more expensive DSPs. Arm and its partners provide developers with easy to use tooling and a free software framework (CMSIS-DSP). So, you’ll be up and running within minutes.

3+
2+

Challenges

  • High maintenance costs
  • Measurement problems because of:
    • Interference
    • Non-communicating system
    • Security
    • Dust, heat, fog, ice,…
  • No control, no efficiency
  • Security of legacy systems

Working at water is a struggle with the elements: water, wind, dust, heat, pressure. So, you want to know if:

  • pipelines are going to leak before they are actually leaking.
  • That cables are beginning to wear out. That the oil level is still on the right level.
  • That you can act when dust or smear are blocking lenses.

With IoT, you can predict and prevent equipment failure by monitoring product wear and replacement rates.  As such, you improve the reliability of your assets and reduce downtime. And if you recognize little faults, you can solve them easily before they have become big and expensive problems.

Systems don’t communicate

Besides, most applications in a port environment are working, but do not communicate with each other. With our IoT solutions, you can monitor and control all your processes at the same time in 1 dashboard.

Optimize your just-in-time management

Meanwhile, you can optimize your just-in-time management as well. In the coming years, water transport will increase. On the other hand, the possibilities of a port to largen are most of times limited. To deal with the increasing pressure op ports and thus stay in a healthy competition, water transport needs to optimize the use of their equipment as efficient as possible. Like which ship can enter the port, the just-in-time allocation of ships to cranes, where a truck is already waiting to carry the load of the ship elsewhere.

Secure your assets and your load

Security has long time being disregarded, but is becoming one of the more important issues in Smart Water. And with reason: think about hacks on harbor terminals.

2+
3+

Water and rail infrastructure are one of the cornerstones of smart grids, such as smart cities. In them, algorithms are found everywhere.

Challenges in Water and Rail infrastructure

  • Many parts of the infrastructure are decades old and have high maintenance costs
  • Preventative maintenance of components (motor, chain, wiring, jackscrew, etc.) is required to reduce costs and maintain safety
  • Less service disruptions and customer complaints
  • No control of assets, and so no idea if assets are working properly
  • New analysis methods required, as existing infrastructure cannot be dismantled for installation of traditional sensors
  • Most of the infrastructure has been built when security was not an issue. This makes the infrastructure an easy target for hackers and terrorists

Decades old infrastructure

Many parts of the infrastructure are decades old. That’s also one of the reasons that they have high maintenance costs. Besides, regular maintenance consists of doing regular maintenance rounds. Here, every device gets the same attention. However, with preventative maintenance, you can focus on devices which really need it.

Less service disruptions and customer complaints

So, with preventative maintenance, you’ll not only reduce costs. But even more important: devices maintain to be safe for users. Due to timely recognition, you can plan maintenance before a little fault has led to real damage. So, you have less service disruption and more customer satisfaction.

No control of assets

Another challenge we hear is that companies have no control of assets, and so no idea if assets are working properly. Maybe companies have control of the assets they recognize. However, they have no idea if all devices are in scope and how these are connected.

New analysis methods required

The above-mentioned means that new analysis methods are required. However, the existing infrastructure cannot be dismantled for installation of traditional sensors.

Security of assets

Most of the infrastructure has been built when security was not an issue. This makes the infrastructure an easy target for hackers and terrorists

Find out how you can solve your IoT solutions with our algorithms!

3+
3+

Biomedical devices are one of the golden nuggets of IoT.

What are the challenges?

  •  Tightening of health system budgets
  •  Higher treatment costs due to an aging population
  •  Long patient waiting times
  •  Protection of patient medical data from hackers

Biomedical devices are one of the golden nuggets of IoT. The medical industry has the challenge that health system budgets are being tightened. This is further complicated by an aging population with higher life expectancy and higher demands for medical treatment. As a consequence, serving a population with an increasing aging population means that there will be longer patient waiting times and increased medical costs.
Smart medical devices are viable solution to facilitate this for many people, especially the elderly who greatly value their independence.

Exercises at home

A lot of time is lost travelling to therapy appointments, and for elderly people with limited mobility, this is not always possible. A much more efficient method is to allow patients to do their exercises at home. Smart sensors provide a simple way of ‘measuring if they do their exercises correctly’ and if they are on track for recovery. Patients don’t have to travel and spend hours sitting in a waiting room. The therapist just has to follow the patients’ developments and make an appointment when necessary. And at an appointment, the therapist can easily dive into details, because the patient has followed his recovery themselves. This frees up the therapists’ time, and allows them to focus on the patients with more serious injuries.

Security

Meanwhile, there is the need for protection of patient medical data from hackers. Hospitals are an interesting target for terrorists and other evil-doers. That’s why prevention from being hacked is very important. And if you are being hacked, then you want to know as soon as possible, so you can take action in time, before a hacker has caused any serious damage.

In the IoT of medical devices, algorithms play an important role. Use our algorithms to filter and analyse your ECG and EMG signals. Read more about help with your challenges: https://www.advsolned.com/biomedical/

3+
3+

How to reduce maintenance programme costs, improve safety and improve customer satisfaction? In Preventive maintenance, algorithms are used in many ways to solve their challenges.

What are the challenges?

Typical challenges faced by assets managers include:

  • Measurement of mechanical component fatigue
  • Assess electrical wiring health
  • How to reduce overall operating costs, but not comprise on public safety?
  • Risks posed by hackers & terrorists
  • Asset damage due to vandalism

Preventive Maintenance aims to solve these problems by acting beforehand. This is achieved by constantly monitoring the performance of critical components (usually with sensors). So, the maintenance team can be alerted that a component is about to fail. Then, the asset management team can then schedule maintenance in order to replace the failing component(s) with minimum disruption to the public, and overall lower operational costs.

Reduction of operating costs

Preventive maintenance is one of the golden nuggets of IoT. In IoT, algorithms are found everywhere. Sensors can measure if mechanical component fatigue sets in. Or measure the health of electrical wiring. These are some examples how preventive maintenance can benefit from IoT using sensors. As a result, operation costs are reduced. And even more important: devices will work safe and secure.

Security

Besides, most devices have been built while security was not an issue. With everything being connected, IoT devices are a interesting target for terrorists or other evil-doers. Prevent yourself from being hacked. And if you are being hacked, you know as soon as possible. So you can take action before the hack leads to major damage.

Read more at https://www.advsolned.com/preventative-maintenance/

3+
2+

There is an increasing use of the water infrastructure, while the current demand is already adjacent to the existing capacity. However, space for physical expansion is limited. On the other hand, there is a tightening of budgets, while maintenance of water infrastructure comes with high costs.

Huge cost savings as well as reducing public inconvenience can be achieved with a preventative maintenance program. Benefits of a preventive maintenance program are:

  • A longer lifetime for your equipment with preventive maintenance
  • Be in control and optimize your processes
  • Optimize your just-in-time management and get more value by delivering guarantees
  • Increase security for your cargo and your equipment

Struggle with the elements

Working at water is a struggle with the elements: water, wind, dust, heat, pressure. So, you want to know if pipelines are going to leak before they are actually leaking. When cables are beginning to wear out. If the oil is still on the right level. That you can act when dust or smear are blocking lenses. With IoT, you can predict and prevent equipment failure by monitoring product wear and replacement rates.  As such, you improve the reliability of your assets and reduce downtime. And if you recognize little faults, you can solve them easily before they have become big and expensive problems.

Rust

Another time- and money saver is the maintenance in the port: one of the worst enemies is rust. No wonder, that the in- and outside of the ship is painted very often. Even when there is no rust, ‘just in case’. It is better to place a rust sensor: it warns when there is rust and those places can be painted or otherwise maintained. And it makes sure spots are not forgotten. Even more: a rust sensor can track rust at places which are hardly reachable. An employee only has to go to this hard-to-reach part when it is really needed.

How preventive maintenance works

In essence, algorithms and analytics monitor sensor data. They look for deviations in a physical process’s normal operation. Examples are the wear and tear in a water sluice’s mechanical components, or even damaged wiring for the pump.

A sensor fusion algorithm merges data from different sensors. Associated analytics determine whether a component’s characteristic is normal for its age. Any deviations outside ‘normal operation’ are fed back to the master system as potential sources of failure.

2+